| A) Definitions | |
|---|---|
| 1) Identifying Polynomial Properties | Ex 1 Ex 2 Ex 3 |
| 2) Classifying Polynomials by Degree | Ex 4 Ex 5 Ex 6 Ex 7 Ex 8 |
| 3) Identifying Coefficients | Ex 9 Ex 10 Ex 11 |
| B) Operations with Polynomials | |
| 4) Performing Linear Operations | Ex 12 Ex 13 Ex 14 Ex 15 |
| 5) Expanding Polynomials | Ex 16 Ex 17 Ex 18 Ex 19 |
| 6) Identifying Coefficients | Ex 20 Ex 21 Ex 22 Ex 23 |
| C) The Division Algorithm | |
| 7) Performing Polynomial Division | Ex 24 Ex 25 Ex 26 Ex 27 |
| 8) Verifying Divisibility | Ex 28 Ex 29 Ex 30 |
| 9) Finding Coefficients of Factors | Ex 31 Ex 32 Ex 33 |
| D) The Remainder and Factor Theorems | |
| 10) Applying the Remainder Theorem | Ex 34 Ex 35 Ex 36 |
| 11) Verifying Divisibility | Ex 37 Ex 38 Ex 39 |
| 12) Finding Unknown Coefficients | Ex 40 Ex 41 Ex 42 |
| 13) Factorising Polynomials Given a Factor | Ex 43 Ex 44 |
| E) Quadratic Equations with Complex Roots | |
| 14) Solving Quadratic Equations | Ex 45 Ex 46 Ex 47 Ex 48 |
| 15) Factoring Polynomials | Ex 49 Ex 50 Ex 51 |
| F) The Fundamental Theorem of Algebra | |
| 16) Applying the Conjugate Root Theorem | Ex 52 Ex 53 Ex 54 |
| G) Sum and Product of Roots Theorem | |
| 17) Applying Vieta's Formulas | Ex 55 Ex 56 Ex 57 Ex 58 |
| 18) Finding All Roots of a Polynomial | Ex 59 Ex 60 Ex 61 Ex 62 |