| A) Derivative | |
|---|---|
| I) Rate of Change | |
| 1) Finding Rate of Change | Ex 1 Ex 2 Ex 3 Ex 4 |
| 2) Finding Rate of Change from a Graph | Ex 5 Ex 6 Ex 7 Ex 8 |
| 3) Modeling with Rates of Change | Ex 9 Ex 10 Ex 11 Ex 12 |
| 4) Modeling with Rates of Change | Ex 13 Ex 14 Ex 15 |
| II) Limit Definition of the Derivative | |
| 5) Conjecturing the Derivative at a Point | Ex 16 Ex 17 Ex 18 |
| 6) Finding the Derivative Graphically | Ex 19 Ex 20 Ex 21 Ex 22 |
| 7) Finding the Derivative at a Point | Ex 23 Ex 24 Ex 25 |
| III) Derivative Function | |
| 8) Finding the Derivative from First Principles | Ex 26 Ex 27 Ex 28 Ex 29 Ex 30 |
| 9) Interpreting the Graph of the Derivative | Ex 31 Ex 32 Ex 33 |
| 10) Finding the Tangent Slope Using the Derivative Function | Ex 34 Ex 35 Ex 36 |
| IV) Conditions of Differentiability | |
| 11) Identifying Differentiability from a Graph | Ex 37 Ex 38 Ex 39 |
| 12) Proving Non-Differentiability at a Point | Ex 40 Ex 41 |
| B) Rules of Differentiation | |
| I) Basic Rules and Power Functions | |
| 13) Proving Basic Rules and Power Functions | Ex 42 Ex 43 Ex 44 Ex 45 |
| 14) Applying the Power Rule | Ex 46 Ex 47 Ex 48 Ex 49 Ex 50 |
| 15) Differentiating Polynomial Functions | Ex 51 Ex 52 Ex 53 Ex 54 |
| 16) Differentiating Functions with Fractional and Negative Exponents | Ex 55 Ex 56 Ex 57 Ex 58 |
| 17) Expanding Before Differentiating | Ex 59 Ex 60 Ex 61 Ex 62 |
| II) Chain Rule | |
| 18) Forming Composite Functions | Ex 63 Ex 64 Ex 65 Ex 66 |
| 19) Decomposing Composite Functions | Ex 67 Ex 68 Ex 69 Ex 70 |
| 20) Differentiating with the Chain Rule | Ex 71 Ex 72 Ex 73 Ex 74 |
| III) Product Rule | |
| 21) Differentiating with the Product Rule | Ex 75 Ex 76 Ex 77 Ex 78 |
| IV) Quotient Rule | |
| 22) Differentiating with the Quotient Rule | Ex 79 Ex 80 Ex 81 Ex 82 |
| V) Implicit Differentiation | |
| 23) Finding the Derivative of an Implicit Function | Ex 83 Ex 84 Ex 85 |
| 24) Finding the Slope of a Tangent Line of an Implicit Function | Ex 86 Ex 87 Ex 88 |
| C) Derivatives of Standard Functions | |
| I) Exponential Functions | |
| 25) Differentiating Exponential Functions: Level 1 | Ex 89 Ex 90 Ex 91 Ex 92 |
| 26) Differentiating Exponential Functions: Level 2 | Ex 93 Ex 94 Ex 95 Ex 96 Ex 97 |
| II) Logarithmic Functions | |
| 27) Differentiating Logarithmic Functions: Level 1 | Ex 98 Ex 99 Ex 100 |
| 28) Differentiating Logarithmic Functions: Level 2 | Ex 101 Ex 102 Ex 103 Ex 104 |
| 29) Differentiating Logarithm Functions of the Form \(\log_a(x)\) | Ex 105 Ex 106 Ex 107 Ex 108 |
| III) Trigonometric Functions | |
| 30) Differentiating Trigonometric Functions: Level 1 | Ex 109 Ex 110 Ex 111 |
| 31) Differentiating Trigonometric Functions: Level 2 | Ex 112 Ex 113 Ex 114 Ex 115 |
| 32) Finding the Slope of a Tangent Line of an Implicit Function | Ex 116 |
| 33) Differentiating Other Trigonometric Functions: Level 1 | Ex 117 Ex 118 Ex 119 |
| 34) Differentiating Other Trigonometric Functions: Level 2 | Ex 120 Ex 121 Ex 122 |
| IV) Inverse Trigonometric Functions | |
| 35) Differentiating Inverse Trigonometric Functions: Level 1 | Ex 123 Ex 124 Ex 125 |
| 36) Differentiating Inverse Trigonometric Functions: Level 2 | Ex 126 Ex 127 Ex 128 |
| D) Second Derivative | |
| I) Definition | |
| 37) Calculating the First and Second Derivative: Level 1 | Ex 129 Ex 130 Ex 131 |
| 38) Calculating the First and Second Derivative: Level 2 | Ex 132 Ex 133 Ex 134 |
| E) Finding Limits of Indeterminate Forms | |
| I) L'Hôpital's Rule | |
| 39) Applying L'Hôpital's Rule: Level 1 | Ex 135 Ex 136 Ex 137 Ex 138 Ex 139 |
| 40) Applying L'Hôpital's Rule: Level 2 | Ex 140 Ex 141 Ex 142 |