\( \definecolor{colordef}{RGB}{249,49,84} \definecolor{colorprop}{RGB}{18,102,241} \)
Courses
About
Login
Register
C
⌫
\(\pi\)
e
\(\frac{a}{b}\)
!
←
→
(
)
\(\sqrt{\,}\)
\(a^{b}\)
7
8
9
\(\div\)
log
ln
4
5
6
\(\times\)
cos
cos⁻¹
1
2
3
-
sin
sin⁻¹
0
.
=
+
tan
tan⁻¹
For the function \(f(x)=\sqrt{x}\), find the rate of change from \(x=1\) to \(x=1+h\). Round your answers to 4 decimal places.
for \(h=1\):
\(\pi\)
\(e\)
\(x\)
\(n\)
\(u_n\)
\(f\)
\(i\)
\(\frac{a}{b}\)
\(\sqrt{\,}\)
\({a}^{b}\)
\(\ln{\,}\)
\(\log{\,}\)
!
\(C\)
7
8
9
←
→
\(\sin{\,}\)
4
5
6
(
)
\(\cos{\,}\)
1
2
3
\(\times\)
\(\div\)
\(\tan{\,}\)
C
0
.
+
-
=
for \(h=0.1\):
\(\pi\)
\(e\)
\(x\)
\(n\)
\(u_n\)
\(f\)
\(i\)
\(\frac{a}{b}\)
\(\sqrt{\,}\)
\({a}^{b}\)
\(\ln{\,}\)
\(\log{\,}\)
!
\(C\)
7
8
9
←
→
\(\sin{\,}\)
4
5
6
(
)
\(\cos{\,}\)
1
2
3
\(\times\)
\(\div\)
\(\tan{\,}\)
C
0
.
+
-
=
for \(h=0.01\):
\(\pi\)
\(e\)
\(x\)
\(n\)
\(u_n\)
\(f\)
\(i\)
\(\frac{a}{b}\)
\(\sqrt{\,}\)
\({a}^{b}\)
\(\ln{\,}\)
\(\log{\,}\)
!
\(C\)
7
8
9
←
→
\(\sin{\,}\)
4
5
6
(
)
\(\cos{\,}\)
1
2
3
\(\times\)
\(\div\)
\(\tan{\,}\)
C
0
.
+
-
=
Hence, conjecture the value of the derivative at \(x=1\).
\(f'(1)=\)
\(\pi\)
\(e\)
\(x\)
\(n\)
\(u_n\)
\(f\)
\(i\)
\(\frac{a}{b}\)
\(\sqrt{\,}\)
\({a}^{b}\)
\(\ln{\,}\)
\(\log{\,}\)
!
\(C\)
7
8
9
←
→
\(\sin{\,}\)
4
5
6
(
)
\(\cos{\,}\)
1
2
3
\(\times\)
\(\div\)
\(\tan{\,}\)
C
0
.
+
-
=
Exit