\( \definecolor{colordef}{RGB}{249,49,84} \definecolor{colorprop}{RGB}{18,102,241} \)

Proportionality

Definition


Imagine you are buying cookies. The price is \(\dollar 2\) per cookie. The number of cookies is \(\textcolor{colordef}{x}\) and the total cost is \(\textcolor{colorprop}{y}\). We have:
\(\textcolor{colordef}{1}\) cookie costs \(\textcolor{colorprop}{2} = \textcolor{olive}{2} \times \textcolor{colordef}{1}\)
\(\textcolor{colordef}{2}\) cookies cost \(\textcolor{colorprop}{4} = \textcolor{olive}{2} \times \textcolor{colordef}{2}\)
\(\textcolor{colordef}{3}\) cookies cost \(\textcolor{colorprop}{6} = \textcolor{olive}{2} \times \textcolor{colordef}{3}\)
\(\textcolor{colordef}{4}\) cookies cost \(\textcolor{colorprop}{8} = \textcolor{olive}{2} \times \textcolor{colordef}{4}\)
\(\textcolor{colordef}{x}\) cookies cost \(\textcolor{colorprop}{y} = \textcolor{olive}{2} \times \textcolor{colordef}{x}\)
  • Ratio definition: No matter how many cookies you buy, the ratio \(\dfrac{\textcolor{colorprop}{y}}{\textcolor{colordef}{x}}\) is always the same:$$\dfrac{\textcolor{colorprop}{8}}{\textcolor{colordef}{4}} =\dfrac{\textcolor{colorprop}{6}}{\textcolor{colordef}{3}} = \dfrac{\textcolor{colorprop}{4}}{\textcolor{colordef}{2}} = \dfrac{\textcolor{colorprop}{y}}{\textcolor{colordef}{x}} =\textcolor{olive}{ 2}$$
  • Linearity definition: we can also express the total cost as a formula:$$\textcolor{colorprop}{y} = \textcolor{olive}{2} \times \textcolor{colordef}{x}$$

Definition Proportional
Two variables \(\textcolor{colordef}{x}\) and \(\textcolor{colorprop}{y}\) are proportional if the ratio of the two variables is equal to a constant value \(\textcolor{olive}{k}\) called the coefficient of proportionality.$$\dfrac{\textcolor{colorprop}{y}}{\textcolor{colordef}{x}} = \textcolor{olive}{k} $$Alternatively, \(\textcolor{colorprop}{y}\) is proportional to \(\textcolor{colordef}{x}\) if$$ \textcolor{colorprop}{y} = \textcolor{olive}{k}\times \textcolor{colordef}{x}$$
Example
Is this table proportional?
\(\textcolor{colordef}{x}\) \(\textcolor{colordef}{1}\) \(\textcolor{colordef}{2}\) \(\textcolor{colordef}{3}\)
\(\textcolor{colorprop}{y}\) \(\textcolor{colorprop}{15}\) \(\textcolor{colorprop}{30}\) \(\textcolor{colorprop}{45}\)

Yes. Each ratio is equal: \(\dfrac{\textcolor{colorprop}{15}}{\textcolor{colordef}{1}} = \dfrac{\textcolor{colorprop}{30}}{\textcolor{colordef}{2}} = \dfrac{\textcolor{colorprop}{45}}{\textcolor{colordef}{3}} = \textcolor{olive}{15}\).

Calculating a Fourth Proportional

Method Calculating a Fourth Proportional
If 4 tickets cost \(\dollar\)28, how much do 6 tickets cost if each ticket costs the same?
  • Method 1: Using the Coefficient of Proportionality
    Find the unit price (price for 1 ticket):$$\text{Unit price} = \dfrac{28}{4} = 7$$Now multiply by 6 for 6 tickets:$$\text{Total for 6 tickets} = 7 \times 6 = 42$$
  • Method 2: Proportion Equation$$\begin{aligned}\dfrac{\textcolor{colorprop}{28}}{\textcolor{colordef}{4}} &= \dfrac{\textcolor{colorprop}{x}}{\textcolor{colordef}{6}} \\ \textcolor{colordef}{4} \times \textcolor{colorprop}{x} &= \textcolor{colorprop}{28} \times \textcolor{colordef}{6} && \text{(cross multiplication)} \\ \textcolor{colorprop}{x} &= \dfrac{\textcolor{colorprop}{28} \times \textcolor{colordef}{6}}{\textcolor{colordef}{4}} \\ \textcolor{colorprop}{x} &= \textcolor{colorprop}{42}\end{aligned}$$
  • Method 3: Unit Rate with Equivalent Ratios
  • Method 4: Product in Cross
So, \(\textcolor{colordef}{6}\) tickets cost \(\textcolor{colorprop}{42}\) dollars.