\( \definecolor{colordef}{RGB}{249,49,84} \definecolor{colorprop}{RGB}{18,102,241} \)
Courses
About
Login
Register
Let \(A(1,\ 2)\), \(B(5,\ 4)\), \(C(-1,\ -1)\), and \(D(5,\ 3)\).
Calculate the vector \(\Vect{AB}\).
\(\Vect{AB} = \begin{pmatrix} \input{124614}{}{3em}{2em}{}{} \\ \input{224614}{}{3em}{2em}{}{} \end{pmatrix}\)
7
8
9
+
4
5
6
-
1
2
3
*
C
0
.
÷
Calculate the vector \(\Vect{CD}\).
\(\Vect{CD} = \begin{pmatrix} \input{324614}{}{3em}{2em}{}{} \\ \input{424614}{}{3em}{2em}{}{} \end{pmatrix}\)
7
8
9
+
4
5
6
-
1
2
3
*
C
0
.
÷
Calculate the determinant \(\det(\Vect{AB},\,\Vect{CD})\).
\(\det(\Vect{AB},\,\Vect{CD}) = \)
\(\pi\)
\(e\)
\(x\)
\(n\)
\(u_n\)
\(f\)
\(\frac{a}{b}\)
\(\sqrt{\,}\)
\({a}^{b}\)
\(\ln{\,}\)
\(\log{\,}\)
!
7
8
9
←
→
\(\sin{\,}\)
4
5
6
(
)
\(\cos{\,}\)
1
2
3
\(\times\)
\(\div\)
\(\tan{\,}\)
C
0
.
+
-
=
Are the lines \(\Line{AB}\) and \(\Line{CD}\) parallel?
Yes
No
Exit