Let \(M(\cos \theta,\sin\theta)\) the point on the unit circle at the angle \(\theta\).
Let \(M'(\cos(\theta+2\pi),\sin(\theta+2\pi))\) the point on the unit circle at the angle \(\theta+2\pi\).

\(2\pi\) is a full revolution. So, the position on the unit circle is the same: \(M'=M\).
Thus, \(\cos (\theta+2 \pi)=\cos \theta\) and \(\sin (\theta+2 \pi)=\sin \theta\).
The proof extends to any multiple of \(2\pi\), i.e., for integer \(k\).