\( \definecolor{colordef}{RGB}{249,49,84} \definecolor{colorprop}{RGB}{18,102,241} \)

Factorize

Just as we expanded expressions in the previous chapter, we sometimes need to perform the reverse process: factorization. Factorization is the process of writing an expression as a product of factors, often by introducing brackets.

Common Factor Laws

The common factor laws are the reverse of the distributive laws: instead of expanding brackets, we look for a common factor to "pull out" and introduce brackets.
Proposition Common Factor Law 1
\(\textcolor{colorprop}{a}b+\textcolor{colorprop}{a}c=\textcolor{colorprop}{a}(b+c)\quad\) and \(\quad\textcolor{colorprop}{a}b-\textcolor{colorprop}{a}c=\textcolor{colorprop}{a}(b-c)\)
Example
Factorize \(2x+2\).

$$\begin{aligned}2x+2&=\textcolor{colorprop}{2}\times x +\textcolor{colorprop}{2}\times 1\\ &=\textcolor{colorprop}{2}(x+1). \end{aligned}$$

Difference of Squares

Proposition Difference of squares
\(\textcolor{colordef}{a}^2-\textcolor{colorprop}{b}^2 = (\textcolor{colordef}{a}-\textcolor{colorprop}{b})(\textcolor{colordef}{a}+\textcolor{colorprop}{b})\)
Example
Factorize \(x^2-9\).

$$\begin{aligned}x^2-9&= \textcolor{colordef}{x}^2-\textcolor{colorprop}{3}^2\\ & = (\textcolor{colordef}{x}-\textcolor{colorprop}{3})(\textcolor{colordef}{x}+\textcolor{colorprop}{3})\\ \end{aligned}$$

Method Square root
If a number is not squared, take its square root, then apply the formula.
Example
Factorize \(x^2-3\).

$$\begin{aligned}x^2-3 & = \textcolor{colordef}{x}^2 - \left(\textcolor{colorprop}{\sqrt{3}}\right)^2 \\ & = \left(\textcolor{colordef}{x}-\textcolor{colorprop}{\sqrt{3}}\right)\left(\textcolor{colordef}{x}+\textcolor{colorprop}{\sqrt{3}}\right)\end{aligned}$$

Proposition Sum of Squares
A sum of squares \(a^2+b^2\) cannot be factored.
Example
Factorize if possible: \(x^2+1\).

Since \(x^2+1=x^2+1^2\), this sum of squares cannot be factored.

Binomial Factorization

Proposition Binomial factorization
$$\begin{aligned}\textcolor{colordef}{a}^{2}+2 \textcolor{colordef}{a} \textcolor{colorprop}{b}+\textcolor{colorprop}{b}^{2} &= (\textcolor{colordef}{a}+\textcolor{colorprop}{b})^{2}\\ \textcolor{colordef}{a}^{2}-2 \textcolor{colordef}{a} \textcolor{colorprop}{b}+\textcolor{colorprop}{b}^{2} &= (\textcolor{colordef}{a}-\textcolor{colorprop}{b})^{2}\\ \end{aligned}$$
Example
Factorize \(x^2+2x+1\).

$$\begin{aligned}x^2+2x+1 & = \textcolor{colordef}{x}^{2}+2 \times \textcolor{colordef}{x}\times \textcolor{colorprop}{1}+\textcolor{colorprop}{1}^{2}\\ &= (\textcolor{colordef}{x}+\textcolor{colorprop}{1})^{2}\\ \end{aligned}$$