

APPROXIMATIONS AND ERRORS

A ROUNDING

A.1 ROUNDING

Ex 1: Round 12.3456 to 2 decimal places (2 dp).

Ex 2: Round 0.004567 to 2 significant figures (2 sf).

Ex 3: Round 98765 to 3 significant figures (3 sf).

Ex 4: Round 3.14159 to 3 decimal places (3 dp).

Ex 5: Round the number $N = 459.982$ to:

Rounded to	Answer
nearest whole number	<input type="text"/>
1 decimal place	<input type="text"/>
2 significant figures	<input type="text"/>

Ex 6: Complete the table by rounding each number as indicated.

Number	to 3 s.f.	to 2 d.p.
34.052	<input type="text"/>	<input type="text"/>
0.08961	<input type="text"/>	<input type="text"/>
109.99	<input type="text"/>	<input type="text"/>

A.2 ESTIMATING VALUES

Ex 7: A group of 5 friends go to a restaurant. The price of a meal is \$ 9.99 per person.

Estimate the total bill by rounding the price to **1 significant figure**.

\$

Ex 8: A person has a monthly revenue of \$ 1957. Estimate the annual revenue by rounding the monthly amount to **1 significant figure**.

\$

Ex 9: A theatre sold 495 tickets at a price of \$19.50 each. Estimate the total revenue by rounding the numbers to **1 significant figure**.

Ex 10: Estimate the value of the following calculations by rounding each number to **1 significant figure**.

$$\frac{4.12 \times 19.8}{0.49} \approx \boxed{}$$

B ERROR FORMULAS

B.1 CALCULATING ABSOLUTE AND PERCENTAGE ERRORS

Ex 11: The exact value of π is approximately 3.14159. An ancient approximation uses the fraction $\frac{22}{7}$.

1. Calculate the value of $\frac{22}{7}$ to 5 decimal places.

2. Find the absolute error when using $\frac{22}{7}$ as an approximation for π (use $\pi \approx 3.14159$).

3. Calculate the percentage error (to 2 decimal places).

%

Ex 12: A student measures the length of a piece of wire to be 15.4 cm. The manufacturer states the exact length is 15.0 cm.

1. Calculate the error.

2. Calculate the percentage error (to 2 decimal places).

%

Ex 13: The population of a town is exactly 31,467 people. A newspaper reports the population as 31,500 (rounded to 3 significant figures).

1. Find the absolute error.

2. Calculate the percentage error (to 2 decimal places).

%

Ex 14: A carpenter measures a board to be 78 cm long. The actual length is 77.5 cm.

1. Find the absolute error.

2. Calculate the percentage error (to 2 decimal places).

%

C MEASUREMENT ACCURACY

C.1 DETERMINING ACCURACY AND RANGES

Ex 15: State the accuracy (the error interval \pm) of the following measuring devices:

1. A tape measure marked in cm.

$$\pm \boxed{\quad} \text{ cm}$$

2. A measuring cylinder with 1 mL graduations.

$$\pm \boxed{\quad} \text{ mL}$$

3. A set of scales with marks every 500 g.

$$\pm \boxed{\quad} \text{ g}$$

4. A thermometer with marks every 0.1°C .

$$\pm \boxed{\quad} \text{ }^\circ\text{C}$$

Ex 16: Tom's digital thermometer indicates a temperature of 36.4°C .

1. What is the smallest division of the thermometer based on this reading?

$$\boxed{\quad} \text{ }^\circ\text{C}$$

2. Determine the range of values in which Tom's actual temperature T lies.

$$\boxed{\quad} \leq T < \boxed{\quad}$$

Ex 17: Joanne's exercise watch displays the distance she has run to **3 significant figures**. Find the **least** distance Joanne could have run for each display:

1. Display: 1.06 km.

$$\boxed{\quad} \text{ km}$$

2. Display: 10.1 km.

$$\boxed{\quad} \text{ km}$$

Ex 18: Hasan has measured the length of several ropes to be 2.4 m each.

1. What is the accuracy of his measurement?

$$\pm \boxed{\quad} \text{ m}$$

2. If Hasan places 10 of these ropes end to end, what is the maximum possible total length?

$$\boxed{\quad} \text{ m}$$

Ex 19: In a race, the times recorded for Jiao and Liang were 128 s and 133 s respectively, measured to the nearest second. Find the range of possible values for the time difference d by which Jiao beat Liang (i.e., Liang's time minus Jiao's time).

$$\boxed{\quad} < d < \boxed{\quad}$$

D BOUNDS

D.1 DETERMINING LOWER AND UPPER BOUNDS

Ex 20: For each of the following measurements, determine the lower bound and upper bound.

1. $x = 5 \text{ cm}$ (nearest cm).

Lower Bound: Upper Bound:

2. $y = 8.4 \text{ kg}$ (nearest 0.1 kg).

Lower Bound: Upper Bound:

3. $z = 120 \text{ m}$ (nearest 10 m).

Lower Bound: Upper Bound:

4. $t = 3.45 \text{ s}$ (2 decimal places).

Lower Bound: Upper Bound:

Ex 21: A distance is measured as $D = 400 \text{ km}$ correct to 1 significant figure.

1. Determine the lower bound.

$$\boxed{\quad}$$

2. Determine the upper bound.

$$\boxed{\quad}$$

D.2 CALCULATING WITH BOUNDS

Ex 22: A rectangle has length $L = 8.5 \text{ cm}$ and width $W = 4.2 \text{ cm}$, both measured to 1 decimal place.

1. Determine the lower and upper bounds for the length L .

Lower: Upper:

2. Determine the lower and upper bounds for the width W .

Lower: Upper:

3. Calculate the maximum possible perimeter of the rectangle.

$$\boxed{\quad}$$

4. Calculate the minimum possible area of the rectangle.

$$\boxed{\quad}$$

Ex 23: The distance traveled by a car is $d = 200 \text{ km}$ (nearest 10 km) and the time taken is $t = 4.0 \text{ hours}$ (nearest 0.1 h).

1. Write down the upper bound for the distance.

$$\boxed{\quad}$$

2. Write down the lower bound for the time.

3. Calculate the maximum possible average speed (in km/h).

Ex 24: Two lengths are given as $A = 15$ cm and $B = 12$ cm, both to the nearest cm.

Calculate the bounds for the difference $A - B$.

Lower Bound: Upper Bound:

Ex 25: A box has a height $h = 10$ cm and a square base with side $s = 5$ cm. Both measurements are correct to the nearest cm.

Calculate the maximum possible volume of the box.