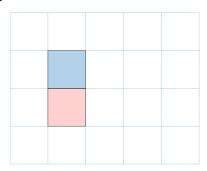
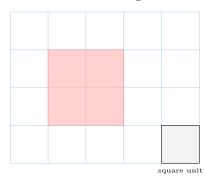

AREA UNITS

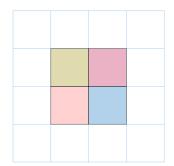
A AREA


A.1 FINDING AREA OF A SHAPE

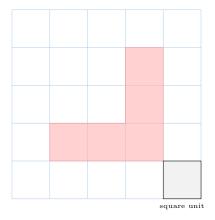
Ex 1: What is the area of the red figure?


$$A = \boxed{2}$$
 square units

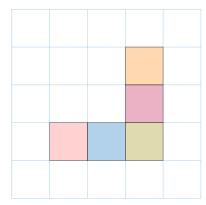
Answer: To find the area, we count the number of unit squares inside the shape.


The area is 2 square units.

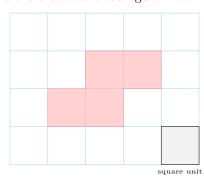
Ex 2: What is the area of the red figure?


 $A = \boxed{4}$ square units

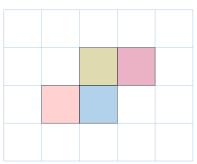
Answer: To find the area, we count the number of unit squares inside the shape.


The area is 4 square units.

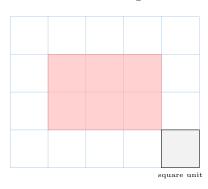
Ex 3: What is the area of the red figure?


 $A = \boxed{5}$ square units

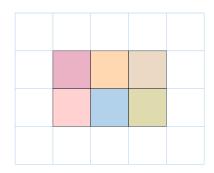
Answer: To find the area, we count the number of unit squares inside the shape.


The area is 5 square units.

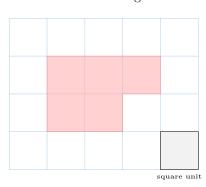
Ex 4: What is the area of the red figure?


 $A = \boxed{4}$ square units

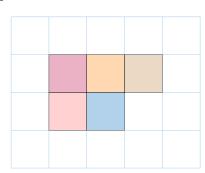
Answer: To find the area, we count the number of unit squares inside the shape.


The area is 4 square units.

Ex 5: What is the area of the red figure?

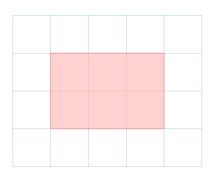

$$A = \boxed{6}$$
 square units

 ${\it Answer:}$ To find the area, we count the number of unit squares inside the shape.


The area is 6 square units.

Ex 6: What is the area of the red figure?

 $A = \boxed{5}$ square units


Answer: To find the area, we count the number of unit squares inside the shape.

The area is 5 square units.

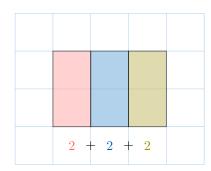
A.2 BUILDING FORMULAS

MCQ 7: What is the area of the red rectangle?

Choose the 4 correct answers:

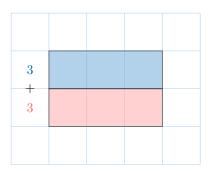
$$\boxtimes 2+2+2$$

$$\boxtimes 3+3$$

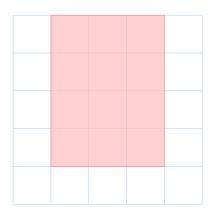

$$\Box 3 + 2 + 3 + 2$$

$$\boxtimes 2 \times 3$$

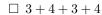
$$\boxtimes 3 \times 2$$


Answer:

• We can count the squares like that:


$$\bullet$$
 2 + 2 + 2 = 3 × 2.

• We can also count like that

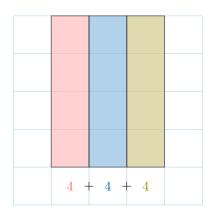


• $3 + 3 = 2 \times 3$.

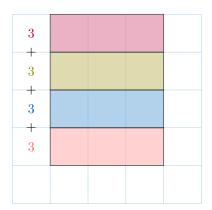
MCQ 8: What is the area of the red rectangle?

Choose 4 correct answers:

$$\boxtimes 4+4+4$$

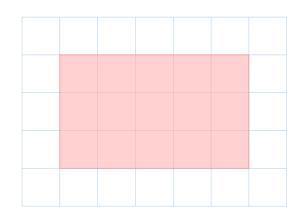

$$\boxtimes 3 + 3 + 3 + 3$$

$$\boxtimes 4 \times 3$$


$$\boxtimes 3 \times 4$$

Answer:

• We can count the squares like that:



- $4 + 4 + 4 = 3 \times 4$.
- We can also count like that:

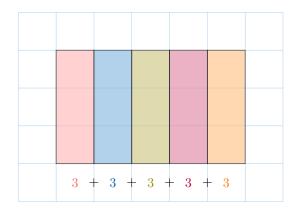
• $3+3+3+3=4\times 3$.

MCQ 9: What is the area of the red rectangle?

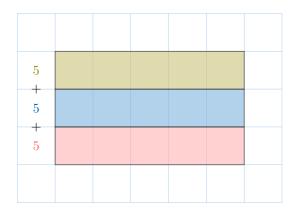
Choose the 4 correct answers:

$$\boxtimes 3 + 3 + 3 + 3 + 3$$

$$\boxtimes 5+5+5$$


$$\Box 5 + 3 + 5 + 3$$

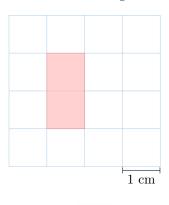
$$\boxtimes 3 \times 5$$


$$\boxtimes$$
 5 × 3

Answer:

• We can count the squares like that:

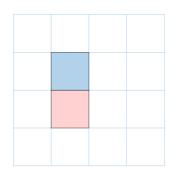
- $3+3+3+3+3=5\times 3$.
- We can also count like that:



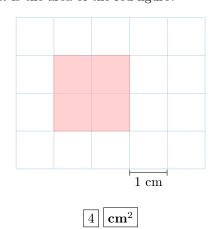
• $5 + 5 + 5 = 3 \times 5$.

B UNITS OF AREA

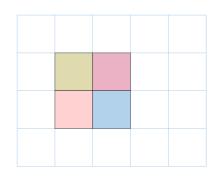
B.1 FINDING AREA OF A SHAPE


Ex 10: What is the area of the red figure?

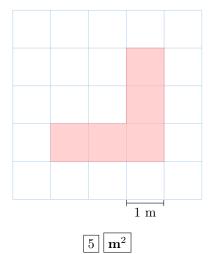
2 cm²


Answer:

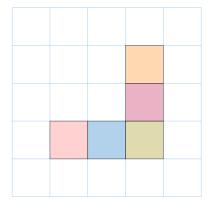
- The unit of area is cm^2 .
- To find the area, we count the number of square centimeters inside the shape.


The area is 2 cm^2 .

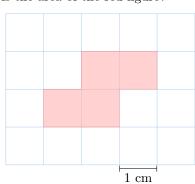
Ex 11: What is the area of the red figure?


Answer:

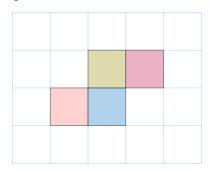
- The unit of area is cm^2 .
- To find the area, we count the number of square centimeters inside the shape.


The area is 4 cm^2 .

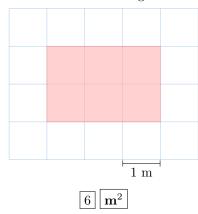
Ex 12: What is the area of the red figure?


Answer:

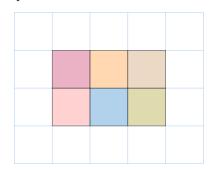
- The unit of area is m^2 .
- To find the area, we count the number of square meters inside the shape.


The area is 5 m^2 .

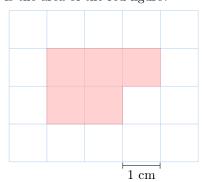
Ex 13: What is the area of the red figure?


Answer:

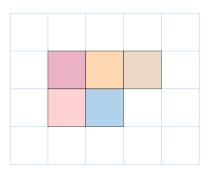
- The unit of area is cm².
- To find the area, we count the number of square centimeters inside the shape.


The area is 4 cm^2 .

Ex 14: What is the area of the red figure?


Answer:

- The unit of area is m².
- To find the area, we count the number of square meters inside the shape.


The area is 6 m^2 .

Ex 15: What is the area of the red figure?

Answer:

- The unit of area is cm^2 .
- To find the area, we count the number of square centimeters inside the shape.

The area is 5 cm^2 .

B.2 CHOOSING UNITS FOR AREA

MCQ 16: What unit will be used to measure the area of your bedroom?

Choose 1 answer:

- ☐ Square millimeters
- ☐ Square centimeters
- ☐ Square kilometers

Answer: Square meters will be used to measure the area of your bedroom because it's a larger unit, perfect for measuring bigger spaces like a room, but not as large as a square kilometer or as small as a square centimeter or square millimeter.

MCQ 17: What unit will be used to measure the area of a piece of paper?

Choose 1 answer:

- ☐ Square millimeters
- ☐ Square meters
- ☐ Square kilometers

Answer: Square centimeters will be used to measure the area of a piece of paper because it's a smaller unit, perfect for measuring smaller spaces like a sheet of paper, but not as small as a square millimeter or as large as a square meter or square kilometer.

MCQ 18: What unit will be used to measure the area of a country?

Choose 1 answer:

- ☐ Square millimeters
- ☐ Square centimeters
- ☐ Square meters

Answer: Square kilometers will be used to measure the area of a country because it's a very large unit, perfect for measuring huge spaces like a country, while square meters, square centimeters, and square millimeters are too small.

MCQ 19: What unit will be used to measure the area of a playground?

Choose 1 answer:

- ☐ Square millimeters
- ☐ Square centimeters
- ☐ Square kilometers

Answer: Square meters will be used to measure the area of a playground because it's a larger unit, perfect for measuring bigger spaces like a playground, but not as large as a square kilometer or as small as a square centimeter or square millimeter.

MCQ 20: What unit will be used to measure the area of a tiny sticker like a glitter dot?

Choose 1 answer:

- \square Square centimeters
- ☐ Square meters
- \square Square kilometers

Answer: Square millimeters will be used to measure the area of a tiny sticker because it is a very small object. Square centimeters, square meters, and square kilometers are too large to be practical.

C CONVERSION OF AREA UNITS

C.1 CONVERTING AREA UNITS

Ex 21: Convert:

$$3 \, \text{cm}^2 = \boxed{300} \, \text{mm}^2$$
.

Answer:

ullet Multiplication Method:

$$3 \,\mathrm{cm}^2 = 3 \times 100 \,\mathrm{mm}^2$$
$$= 300 \,\mathrm{mm}^2$$

• Conversion Table Method:

	km^2		ha		m^2		(m^2	m	1 m 2
\vdash		-	1					2	0	0
								3	U	U

So,

$$3 \, \text{cm}^2 = 300 \, \text{mm}^2$$

Ex 22: Convert:

$$5000 \, \text{mm}^2 = \boxed{50} \, \text{cm}^2$$
.

Answer:

• Division Method:

$$5000 \,\mathrm{mm}^2 = 5000 \div 100 \,\mathrm{cm}^2$$

= $50 \,\mathrm{cm}^2$

• Conversion Table Method:

k	cm^2	ha ha		m^2		(cm^2	mm^2			
								5	0	0	0

So,

$$5000 \, \text{mm}^2 = 50 \, \text{cm}^2$$

Ex 23: Convert:

$$6 \,\mathrm{m}^2 = \boxed{60000} \,\mathrm{cm}^2.$$

Answer:

• Multiplication Method:

$$6 \,\mathrm{m}^2 = 6 \times 10\,000 \,\mathrm{cm}^2$$

= $60\,000 \,\mathrm{cm}^2$

• Conversion Table Method:

Γ	km^2		ha				m^2				(cm^2	mm^2	
								6	0	0	0	0		

So,

$$6 \,\mathrm{m}^2 = 60\,000 \,\mathrm{cm}^2$$

Ex 24: Convert:

$$90\,000\,\text{cm}^2 = \boxed{9}\,\text{m}^2.$$

Answer:

• Division Method:

$$90\,000\,\mathrm{cm}^2 = 90\,000 \div 10\,000\,\mathrm{m}^2$$

= $9\,\mathrm{m}^2$

• Conversion Table Method:

ŀ	cm^2	ha		m^2			(cm^2	m	m^2
				9	0	0	0	0		

So,

$$90\,000\,\mathrm{cm}^2 = 9\,\mathrm{m}^2$$

C.2 CONVERTING AREA UNITS WITH DECIMAL NUMBERS

Ex 25: Convert:

$$24.5\,\mathrm{m}^2 = \boxed{245000}\,\mathrm{cm}^2.$$

Answer:

• Multiplication Method:

$$24.5 \,\mathrm{m}^2 = 24.5 \times 10\,000 \,\mathrm{cm}^2$$

= $245\,000 \,\mathrm{cm}^2$

• Conversion Table Method:

km² ha				m^2				(cm^2	mm^2		
					2	4	5	0	0	0.		

So,

$$24.5 \,\mathrm{m}^2 = 245\,000 \,\mathrm{cm}^2$$

Ex 26: Convert:

$$5000 \, \text{cm}^2 = \boxed{0.5} \, \text{m}^2.$$

Answer:

• Division Method:

$$5\,000\,\mathrm{cm}^2 = 5\,000 \div 10\,000\,\mathrm{m}^2$$

= $0.5\,\mathrm{m}^2$

• Conversion Table Method:

	km^2	ha	m^2			cm^2		mm^2	
ĺ			0.	5	0	0	0		

So,

$$5000 \,\mathrm{cm}^2 = 0.5 \,\mathrm{m}^2$$

Ex 27: Convert:

$$0.25\,{\rm cm}^2 = 25\,{\rm mm}^2.$$

Answer:

• Multiplication Method:

$$0.25 \,\mathrm{cm^2} = 0.25 \times 100 \,\mathrm{mm^2}$$

= $25 \,\mathrm{mm^2}$

• Conversion Table Method:

km^{2}		ha				m^2				cm^2		mm^2	
											0	2	5.

So,

$$0.25\,\mathrm{cm}^2 = 25\,\mathrm{mm}^2$$

Ex 28: Convert:

$$534 \,\mathrm{mm}^2 = \boxed{5.34} \,\mathrm{cm}^2.$$

Answer:

• Division Method:

$$534 \text{ mm}^2 = 534 \div 100 \text{ cm}^2$$

= 5.34 cm^2

• Conversion Table Method:

	k	cm^2	ha				m^2				cm^2		mm^2	
Ì												5.	3	4

So,

$$534 \, \text{mm}^2 = 5.34 \, \text{cm}^2$$