
CONTINUOUS RANDOM VARIABLES

A DEFINITIONS

A.1 PROBABILITY DENSITY FUNCTION

A.1.1 CALCULATING PROBABILITIES UNDER THE
CURVE

Ex 1: Suppose X represents the time (in hours) a device
operates before needing maintenance, with values on [0, 2], and
its probability density function f(x) is shown in the graph below.

x

y

0 1 2

1

y = f(x)

Using the graph, estimate the probability that the device
operates for 1 hour or less.

P (0 ≤ X ≤ 1) =

Ex 2: Suppose X represents the waiting time (in minutes) for a
bus, with values on [0, 2], and its probability density function is
shown in the graph below.

x

y

0 1 2

1
y = f(x)

Using the graph, estimate the probability that the waiting time
is less than 1 minute.

P (X < 1) =

Ex 3: Suppose X represents the waiting time (in minutes) for
a bus, which follows a uniform distribution over [0, 10], and its
probability density function f(x) is shown in the graph below.

x

y

0 1 2 3 4 5 6 7 8 9 10

1

y = f(x)

Using the graph, estimate the probability that the waiting time
is 4 minutes or less.

P (0 ≤ X ≤ 4) =

Ex 4: Suppose X represents the waiting time (in minutes) for a
bus, with values on [0, 2], and its probability density function is
given by f(x) = x

2 , as shown in the graph below.

x

y

0 1 2

1
y = f(x)

Using the graph, estimate the probability that the waiting time
is more than 1 minute.

P (X > 1) =

A.1.2 VERIFYING THAT f(x) IS A PROBABILITY
DENSITY FUNCTION

Ex 5: Consider the function f(x) = 1
2 , defined on the interval

[0, 2].

x

y

0 1 2

1

y = 1
2

Verify that f(x) is a probability density function on the interval
[0, 2].

From the graph, f(x) > 0 for all 0 6 x 6 2.∫ 2

0

f(x) dx =

∫ 2

0

1

2
dx

=
1

2
[x]

2
0

=
1

2
[2− 0]

=
1

2
· 2

= 1

So f is a probability density function on the interval [0, 2].

Ex 6: Consider the function f(x) = 3
4 (1 − x

2), defined on the
interval [−1, 1].

1



x

y

0−1 1

1

y = 3
4 (1− x

2)

Verify that f(x) is a probability density function on the interval
[−1, 1].

From the graph, f(x) > 0 for all −1 6 x 6 1.∫ 1

−1
f(x) dx =

∫ 1

−1

3

4

(
1− x2

)
dx

=
3

4

[
x− x3

3

]1
−1

=
3

4

[
4

3

]
= 1

So f is probability density function on the interval [−1, 1].

Ex 7: Consider the function f(x) = x2

9 , defined on the interval
[0, 3].

x

y

0 1 2 3

1
y = x2

9

Verify that f(x) is a probability density function on the interval
[0, 3].

From the graph, f(x) > 0 for all 0 6 x 6 3.∫ 3

0

f(x) dx =

∫ 3

0

x2

9
dx

=
1

9

[
x3

3

]3
0

=
1

9

[
33

3
− 03

3

]
=

1

9
· 9

= 1

So f is a probability density function on the interval [0, 3].

Ex 8: Consider the function f(x) = sin(x), defined on the
interval [0, π2 ].

x

y

0 1

1
y = sin(x)

Verify that f(x) is a probability density function on the interval
[0, π2 ].

From the graph, f(x) > 0 for all 0 6 x 6 π
2 .∫ π

2

0

f(x) dx =

∫ π
2

0

sin(x) dx

= [− cos(x)]
π
2
0

= − cos
(π
2

)
− (− cos(0))

= 0 + 1

= 1

So f is a probability density function on the interval [0, π2 ].

A.1.3 NORMALIZING A PROBABILITY DENSITY
FUNCTION

Ex 9: Consider the function f(x) = a.
Find the value of a such that f(x) is a probability density
function on the interval [0, 2].

1 =

∫ 2

0

a dx

1 = a [x]
2
0

1 = a (2− 0)

1 = 2a

a =
1

2

Ex 10: Consider the function f(x) = ax3.
Find the value of a such that f(x) is a probability density
function on the interval [0, 2].

1 =

∫ 2

0

f(x) dx =

∫ 2

0

ax3 dx

1 = a

∫ 2

0

x3 dx

1 = a

[
x4

4

]2
0

1 = a

(
24

4
− 04

4

)
1 = 4a

a =
1

4

Ex 11: Consider the function f(x) = a 1
x .
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Find the value of a such that f(x) is a probability density
function on the interval [1, 2].

1 =

∫ 2

1

f(x) dx

1 =

∫ 2

1

a
1

x
dx

1 = a

∫ 2

1

1

x
dx

1 = a [ln(x)]
2
1

1 = a (ln(2)− ln(1))

1 = a ln(2)

a =
1

ln(2)

Ex 12: Consider the function f(x) = a
√
x.

Find the value of a such that f(x) is a probability density
function on the interval [0, 4].

1 =

∫ 4

0

a
√
x dx

1 = a

[
x

3
2

3
2

]4
0

1 = a · 2
3

(
4

3
2 − 0

)
1 = a · 2

3
· 8

1 = a · 16
3

a =
3

16

A.1.4 FINDING A PROBABILITY

Ex 13: The random variable X has the density f(x) = 1
2 , on

the interval [0, 2].

x

y

0 1 2

1

y = 1
2

Find P ( 12 ≤ X ≤
3
4 ).

P

(
1

2
≤ X ≤ 3

4

)
=

∫ 3
4

1
2

1

2
dx

=
1

2
[x]

3
4
1
2

=
1

2

[
3

4
− 1

2

]
=

1

8

Ex 14: The random variable X has the density f(x) = cos(x),
on the interval [0, π2 ].

x

y

0 1

1

y = cos(x)

Find P (0 ≤ X ≤ π
4 ).

P
(
0 ≤ X ≤ π

4

)
=

∫ π
4

0

cos(x) dx

= [sin(x)]
π
4
0

= sin
(π
4

)
− sin(0)

=

√
2

2

Ex 15: The random variable X has the density f(x) = 1
ln(2)x ,

on the interval [1, 2].
Find P

(
1 ≤ X ≤ 3

2

)
.

P

(
1 ≤ X ≤ 3

2

)
=

∫ 3
2

1

1

ln(2)x
dx

=
1

ln 2

∫ 3
2

1

1

x
dx

=
1

ln 2
[lnx]

3
2
1

=
1

ln 2

(
ln

3

2
− ln 1

)
=

ln(3/2)

ln 2

Ex 16: The random variable X has the density f(x) = x
2 , on

the interval [0, 2].
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x

y

0 1 2

1
y = x

2

Find P (1 ≤ X ≤ 2).

P (1 ≤ X ≤ 2) =

∫ 2

1

x

2
dx

=
1

2

∫ 2

1

x dx

=
1

2

[
x2

2

]2
1

=
1

2

(
22

2
− 12

2

)
=

1

2

(
2− 1

2

)
=

1

2
· 3
2

=
3

4

A.2 EXPECTATION

A.2.1 CALCULATING AN EXPECTATION

Ex 17: The random variable X has the density f(x) = 1
2 , on

the interval [0, 2]. Calculate E(X).

E(X) =

∫ 2

0

x
1

2
dx

=
1

2

[
x2

2

]2
0

=
1

2

[
22

2
− 02

2

]
= 1

Ex 18: The random variable X has the density f(x) = 1
ln(2)x ,

on the interval [1, 2]. Calculate E(X).

E(X) =

∫ 2

1

x
1

ln(2)x
dx

=
1

ln 2

∫ 2

1

1 dx

=
1

ln 2
[x]

2
1

=
1

ln 2
(2− 1)

=
1

ln 2

Ex 19: The random variable X has the density f(x) = x
2 , on

the interval [0, 2]. Calculate E(X).

E(X) =

∫ 2

0

x
x

2
dx

=
1

2

∫ 2

0

x2 dx

=
1

2

[
x3

3

]2
0

=
1

2

(
23

3
− 03

3

)
=

1

2
· 8
3

=
4

3

Ex 20: The random variable X has the density f(x) = 2
x2 , on

the interval [1, 2]. Calculate E(X).

E(X) =

∫ 2

1

x
2

x2
dx

=

∫ 2

1

2

x
dx

= 2 [lnx]
2
1

= 2 (ln 2− ln 1)

= 2 ln 2

A.3 VARIANCE

A.3.1 CALCULATING A VARIANCE

Ex 21: The random variable X with values on [−1, 1] has
density f(x) = 1

2 .
Find V (X).
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• E(X) =

∫ 1

−1
x · 1

2
dx

=
1

2

[
x2

2

]1
−1

=
1

2

(
12

2
− (−1)2

2

)
=

1

2

(
1

2
− 1

2

)
= 0

•
∫ 1

−1
x2 · 1

2
dx =

1

2

∫ 1

−1
x2 dx

=
1

2

[
x3

3

]1
−1

=
1

2

(
13

3
− (−1)3

3

)
=

1

2

(
1

3
−
(
−1

3

))
=

1

2
· 2
3

=
1

3

• V (X) =

∫ 1

−1
x2 · f(x) dx− [E(X)]2

=
1

3
− (0)2

=
1

3

Ex 22: The random variable X with values on [0, 2] has density
f(x) = x

2 .
Find V (X).

• E(X) =

∫ 2

0

x2

2
dx

=

[
x3

6

]2
0

=
4

3

•
∫ 2

0

x2 · x
2
dx =

∫ 2

0

x3

2
dx

=

[
x4

8

]2
0

= 2

• V (X) =

∫ 2

0

x2 · f(x) dx− [E(X)]2

= 2−
(
4

3

)2

=
2

9

Ex 23: The random variable X with values on [1, 2] has density
f(x) = 2

x2 .
Find V (X).

• E(X) =

∫ 2

1

x · 2

x2
dx

=

∫ 2

1

2

x
dx

= 2 [lnx]
2
1

= 2(ln 2− ln 1)

= 2 ln 2

•
∫ 2

1

x2 · 2

x2
dx =

∫ 2

1

2 dx

= 2 [x]
2
1

= 2(2− 1)

= 2

• V (X) =

∫ 2

1

x2 · f(x) dx− [E(X)]2

= 2− (2 ln 2)2

= 2− 4 ln2 2

A.4 CONTINUOUS UNIFORM DISTRIBUTION

A.4.1 EXPLORING THE CONTINUOUS UNIFORM
DISTRIBUTION

Ex 24: Consider a random experiment where a spinner is
rotated, and the continuous random variable X represents the
angle spun, measured in degrees, over the interval [0, 360].

N

x

1. Determine the probability density function of X.

2. Calculate P (90 ≤ X ≤ 180).

3. Calculate P (X ≥ 60).

4. Calculate the expected value E(X).
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1. f(x) = 1
360

2. P (90 ≤ X ≤ 180) =

∫ 180

90

1

360
dx

=

[
1

360
x

]180
90

=
1

4

3. P (X ≥ 60) =

∫ 360

60

1

360
dx

=

[
1

360
x

]360
60

=
5

6

4. E(X) =
0 + 360

2
= 180

Ex 25: Consider a scenario where the continuous random
variable X represents the waiting time at a bus stop, uniformly
distributed over the interval [0, 10] minutes.

1. Determine the probability density function of X.

2. Calculate P (X ≤ 8).

3. Calculate the expected value E(X).

1. f(x) = 1
10−0 = 1

10 for 0 ≤ x ≤ 10

2. P (X ≤ 8) =

∫ 8

0

1

10
dx

=

[
1

10
x

]8
0

=
8− 0

10

=
4

5

3. E(X) =
0 + 10

2
= 5

Ex 26: Let X be a continuous random variable following a
continuous uniform distribution on [a, b].
Prove that for all c, d ∈ [a, b],

P (c ≤ X ≤ d) = d− c
b− a

.

Let c, d ∈ [a, b].

P (c ≤ X ≤ d) =
∫ d

c

1

b− a
dx

=

[
x

b− a

]d
c

=
d− c
b− a

.

Ex 27: Let X be a continuous random variable following a
continuous uniform distribution on [a, b].
Prove that the expected value of X is:

E(X) =
a+ b

2
.

E(X) =

∫ b

a

x · 1

b− a
dx

=
1

b− a

[
x2

2

]b
a

=
1

b− a

(
b2

2
− a2

2

)
=

b2 − a2

2(b− a)

=
(b− a)(b+ a)

2(b− a)

=
a+ b

2
.

B NORMAL DISTRIBUTION

B.1 STANDARD NORMAL DISTRIBUTION

B.1.1 FINDING A PROBABILITY FROM AN AREA

MCQ 28: The random variable X follows a standard normal
distribution.

y = 1√
2π
e−

x2

2

−4 −3 −2 −1 0 1 2 3 4
x

y

Find the probability corresponding to the red area.
Choose the one correct answer:

� P (0 ≤ X ≤ 0.5)

� P (−1 ≤ X ≤ 0.5)

� P (X ≤ 0.5)

� P (X ≥ 1)
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� P (X > −0.5)

MCQ 29: The random variable X follows a standard normal
distribution.

y = 1√
2π
e−

x2

2

−4 −3 −2 −1 0 1 2 3 4
x

y

Find the probability corresponding to the red area.
Choose the one correct answer:

� P (0 ≤ X ≤ 0.5)

� P (−1 ≤ X ≤ 0.5)

� P (X ≤ 0.5)

� P (X ≥ 1)

� P (X > −0.5)

MCQ 30: The random variable X follow a standard normal
distribution.

y = 1√
2π
e−

x2

2

−4 −3 −2 −1 0 1 2 3 4
x

y

Find the probability corresponding to the red area.
Choose the one correct answer:

� P (0 6 X 6 0.5)

� P (−1 6 X 6 0.5)

� P (X 6 0.5)

� P (X > 1)

� P (X > −0.5)

MCQ 31: The random variable X follows a standard normal
distribution.

y = 1√
2π
e−

x2

2

−4 −3 −2 −1 0 1 2 3 4
x

y

Find the probability corresponding to the red area.
Choose the one correct answer:

� P (0 ≤ X ≤ 0.5)

� P (−1 ≤ X ≤ 0.5)

� P (X ≤ 0.5)

� P (X ≥ 1)

� P (X > −0.5)

MCQ 32: The random variable X follows a standard normal
distribution.

y = 1√
2π
e−

x2

2

−4 −3 −2 −1 0 1 2 3 4
x

y

Find the probability corresponding to the red area.
Choose the one correct answer:

� P (0 ≤ X ≤ 0.5)

� P (−1 ≤ X ≤ 0.5)

� P (X ≤ 0.5)

� P (X ≥ 1)

� P (X > −0.5)

B.2 NORMAL DISTRIBUTION

B.2.1 FINDING THE NORMAL DISTRIBUTION

MCQ 33: Consider three normal distributions A, B, and C,
each represented by their probability density functions as shown
below.

B A

C

−4 −3 −2 −1 0 1 2 3 4
x

y

Identify which normal distribution has a mean of 1 and a
standard deviation of 1.
Choose the one correct answer:

� Distribution A

� Distribution B

� Distribution C

MCQ 34: Consider three normal distributions A, B, and C,
each represented by their probability density functions as shown
below.

B A

C

−4 −3 −2 −1 0 1 2 3 4
x

y
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Identify which normal distribution has a mean of 0 and a
standard deviation of 1.
Choose the one correct answer:

� Distribution A

� Distribution B

� Distribution C

MCQ 35: Consider three normal distributions A, B, and C,
each represented by their probability density functions as shown
below.

B A

C

−4 −3 −2 −1 0 1 2 3 4
x

y

Identify which normal distribution has a mean of 0 and a
standard deviation of 2.
Choose the one correct answer:

� Distribution A

� Distribution B

� Distribution C

B.2.2 FINDING VALUES USING THE MEAN AND
STANDARD DEVIATION

Ex 36: The height of one-year-old babies is normally distributed
with a mean of 75 cm and a standard deviation of 3 cm. For
medical purposes, a doctor needs to determine the height that
corresponds to one standard deviation above the mean.

cm

Ex 37: In a gas at thermal equilibrium, the velocities of particles
follow a normal distribution with a mean velocity of 500 m/s and
a standard deviation of 100 m/s. A physicist wants to calculate
the velocity that corresponds to one standard deviation below
the mean.

m/s

Ex 38: The weight of adult women is normally distributed
with a mean of 65 kg and a standard deviation of 5 kg. For
a health study, a researcher needs to determine the weight that
corresponds to two standard deviations above the mean.

kg

Ex 39: The final exam scores in a math course are normally
distributed with a mean of 70 points and a standard deviation
of 8 points. A teacher wants to identify students who scored one
standard deviation below the mean.

points

B.2.3 EXPLORING EVERYDAY STATISTICS

Ex 40: Height and weight are key measurements for
tracking a child’s development. The World Health Organization
assesses child development by comparing the weights of children
of the same height and gender. In 2009, the weights of all 80 cm
girls in a reference population were normally distributed with a
mean of 10.2 kg and a standard deviation of 0.8 kg.
Using this information, calculate the following probabilities or
values for the weights of 80 cm girls:

1. The percentage of girls with weights between 10.2 kg and 11
kg.

%

2. The percentage of girls with weights between 10.2 kg and
11.8 kg.

%

3. The percentage of girls with weights greater than 9.4 kg.

%

4. In 2010, if there were 545 girls who were 80 cm tall, estimate
the number of girls with weights between 9.4 kg and 11 kg
(round to the nearest integer).

girls

For a normal distribution, the coverage probabilities are
illustrated below:

µ µ + σ µ + 2σ µ + 3σµ − σµ − 2σµ − 3σ

0.13% 2.15% 13.59% 34.13% 0.13%2.15%13.59%34.13%

x

Ex 41: Exam scores are a key measure for evaluating
student performance. A national education board assesses
student achievement by analyzing scores from a standardized
test. In 2023, the scores of all students in a particular grade were
normally distributed with a mean of 75 points and a standard
deviation of 5 points.
Using this information, calculate the following probabilities or
values for the students’ scores:

1. The percentage of students with scores between 70 and 75
points.

%

2. The percentage of students with scores between 65 and 75
points.

%

3. The percentage of students with scores less than 80 points.

%
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4. In 2024, if there were 600 students in this grade, estimate
the number of students with scores between 70 and 85 points
(round to the nearest integer).

students

For a normal distribution, the coverage probabilities are
illustrated below:

µ µ + σ µ + 2σ µ + 3σµ − σµ − 2σµ − 3σ

0.13% 2.15% 13.59% 34.13% 0.13%2.15%13.59%34.13%

x

Ex 42: Intelligence Quotient (IQ) scores are widely
used to measure cognitive ability. A psychological research
institute analyzes IQ scores to understand population intelligence
distributions. In 2023, the IQ scores of a large adult population
were normally distributed with a mean of 100 and a standard
deviation of 15.
Using this information, calculate the following probabilities or
values for the IQ scores:

1. The percentage of adults with IQ scores between 85 and 100.

%

2. The percentage of adults with IQ scores between 70 and 100.

%

3. The percentage of adults with IQ scores less than 115.

%

4. In 2024, if there were 800 adults in this population, estimate
the number of adults with IQ scores greater than 130 (round
to the nearest integer).

adults

For a normal distribution, the coverage probabilities are
illustrated below:

µ µ + σ µ + 2σ µ + 3σµ − σµ − 2σµ − 3σ

0.13% 2.15% 13.59% 34.13% 0.13%2.15%13.59%34.13%

x

Ex 43: Daily screen time is a critical metric for
understanding teenage behavior and well-being. A national
health study investigates the amount of time teenagers spend
on screens (e.g., phones, computers, TVs) per day. In 2023, the
daily screen time of teenagers in a large sample was normally
distributed with a mean of 6 hours and a standard deviation of
1.5 hours.
Using this information, calculate the following probabilities or
values for the daily screen time of teenagers:

1. The percentage of teenagers with daily screen time between
4.5 and 6 hours.

%

2. The percentage of teenagers with daily screen time between
6 and 9 hours.

%

3. The percentage of teenagers with daily screen time less than
7.5 hours.

%

4. In 2024, if there were 1200 teenagers in this sample, estimate
the number of teenagers with daily screen time greater than
9 hours (round to the nearest integer).

teenagers

For a normal distribution, the coverage probabilities are
illustrated below:

µ µ + σ µ + 2σ µ + 3σµ − σµ − 2σµ − 3σ

0.13% 2.15% 13.59% 34.13% 0.13%2.15%13.59%34.13%

x

B.2.4 FINDING PROBABILITIES USING GRAPHIC
CALCULATOR

Ex 44: Suppose X represents the time (in minutes) taken
to complete a task, and it follows a normal distribution with
a mean of 40 minutes and a standard deviation of 10 minutes.
Calculate the probability that the task is completed between 37
and 48 minutes. Round your answer to three decimal places.

P (37 6 X 6 48) ≈

Ex 45: Suppose X represents the annual rainfall (in
millimeters) in a coastal city, and it follows a normal distribution
with a mean of 1200 mm and a standard deviation of 150 mm.
Calculate the probability that the annual rainfall exceeds 1350
mm. Round your answer to two decimal places.

P (X > 1350) ≈

Ex 46: Suppose X represents the Elo rating of a chess
player, and it follows a normal distribution with a mean of 1500
and a standard deviation of 200. Calculate the probability that a
player’s rating exceeds 2000. Round your answer to three decimal
places.

P (X > 2000) ≈

Ex 47: Suppose X represents the height (in centimeters)
of adult women in Australia, and it follows a normal distribution
with a mean of 165 cm and a standard deviation of 7 cm.
Calculate the probability that a woman’s height is less than or
equal to 160 cm. Round your answer to three decimal places.

P (X 6 160) ≈

www.commeunjeu.com 9

www.commeunjeu.com


B.2.5 BUSTING BRAGS AND CLAIMS WITH NORMAL
CURVES

Ex 48: Suppose X represents the scores (in points) of students
in a math class evaluation, and it follows a normal distribution
with a mean of 65 points and a standard deviation of 10 points.
Hugo receives a score of 75 points and claims, “I am in the top
2% of students in this class.”
Are you agree with Hugo ? Explains your answer.

X ∼ N (65, 102). I calculate:

P (X ≥ 75) ≈ 0.16

I don’t agree. He’s in the top 16%, not 2%.

Ex 49: Suppose X represents the daily water consumption (in
liters) of households in a small town, and it follows a normal
distribution with a mean of 200 liters and a standard deviation
of 30 liters. Maria measures her household’s consumption as
260 liters and claims, “We are in the top 2% of households in
this town.”
Are you agree with Maria ? Explains your answer.

X ∼ N (200, 302). I calculate:

P (X ≥ 260) ≈ 0.023

I do agree. She’s in the top 2.3%, almost 2%.

Ex 50: Suppose X represents the height (in centimeters) of
boys in a school, and it follows a normal distribution with a
mean of 175 cm and a standard deviation of 8 cm. The school
states, “95% of boys can pass under a door of height 190 cm.”
Are you agree with this statement ? Explains your answer.

X ∼ N (175, 82). I calculate:

P (X ≤ 190) ≈ 0.969

I agree. It’s 96.9%, close to 95%.

Ex 51: Suppose X represents the high scores (in points) of
players in a new battle royale video game, and it follows a
normal distribution with a mean of 500 points and a standard
deviation of 50 points. Liam gets a high score of 600 points and
brags, “I’m in the top 5% of all players!”
Are you agree with Liam ? Explains your answer.

X ∼ N (500, 502). I calculate:

P (X ≥ 600) ≈ 0.023

I don’t agree. He’s in the top 2.3%, not 5%—he’s even better!

B.3 QUANTILE

B.3.1 SETTING THE THRESHOLD WITH
PERCENTILES

Ex 52: Suppose X represents the time (in minutes) taken
to complete a task, and it follows a normal distribution with a
mean of 40 minutes and a standard deviation of 10 minutes. The
teacher fixes the duration of the exam such that 95% of students
have finished. Find this time (i.e., the 95th percentile). Round
your answer to one decimal place.

x ≈

Ex 53: SupposeX represents the delivery time (in minutes)
of pizzas from a local shop, and it follows a normal distribution
with a mean of 25 minutes and a standard deviation of 5 minutes.
The shop guarantees a delivery deadline such that 90% of orders
are delivered before this time. Find this time (i.e., the 90th
percentile). Round your answer to one decimal place.

x ≈

Ex 54: Suppose X represents the height (in centimeters) of
men, and it follows a normal distribution with a mean of 175.3
cm and a standard deviation of 7.1 cm. A builder wants to design
a door height such that at least 95% of men can walk through
without ducking. Find this height (i.e., the 95th percentile).
Round your answer to one decimal place.

x ≈

Ex 55: Suppose X represents the battery life (in hours) of
a new smartphone model, and it follows a normal distribution
with a mean of 12 hours and a standard deviation of 2 hours.
The manufacturer sets a warranty replacement time such that
80% of phones last at least this long before needing a recharge.
Find this time (i.e., the 20th percentile, since it’s the lower tail).
Round your answer to one decimal place.

x ≈

Ex 56: Suppose X represents the noise level (in decibels) of
a crowd at a school concert, and it follows a normal distribution
with a mean of 85 decibels and a standard deviation of 15
decibels. The sound engineer sets a microphone threshold such
that 60% of the time, the noise is below this level. Find this
noise level (i.e., the 60th percentile). Round your answer to one
decimal place.

x ≈

Ex 57: Suppose X represents the weight (in kilograms)
of backpacks carried by students, and it follows a normal
distribution with a mean of 8 kg and a standard deviation of
1.5 kg. The school sets a minimum weight limit for a strength
training program such that 95% of students carry at least this
weight. Find this weight (i.e., the 5th percentile, since it’s the
lower tail). Round your answer to one decimal place.
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x ≈
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