# **ELEMENTS OF GEOMETRY**

## A POINT

Definition Point -

A **point** is a single location in space, represented by a dot.

•

Definition Point Notation -

A point is named using a capital letter, written as A.

 $\stackrel{A}{\bullet}$ 

Points have no size, shape, or dimension. They simply mark a position.

**Ex:** The diagram below shows three points labeled A, B, and C:

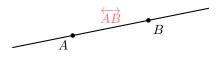
C

•

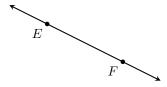
# B LINES, SEGMENTS AND RAYS

Definition Line

A line is a straight collection of points that extends infinitely in both directions.


<del>\</del>

#### Definition Line Notation —


• A line can be named with a lowercase letter, written as  $\overrightarrow{l}$ .



• A line is named using two points on it, written as  $\overrightarrow{AB}$ .



Ex: Name the line shown below:



Answer: The line is  $\overrightarrow{EF}$ .

Definition Line Segment \_\_\_\_\_

A line segment is a part of a line with two endpoints. It has a definite length.



### Definition Line Segment Notation -

A line segment is named by its endpoints, written as  $\overline{AB}$ .



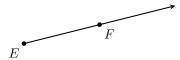
Ex: Name the segment shown below:



Answer: The segment is  $\overline{EF}$ .

### Definition Ray

A ray is a part of a line that starts at one endpoint and extends infinitely in one direction.




### Definition Ray Notation \_

A ray is named by its endpoint and another point on it, written as  $\overrightarrow{AB}$ .



Ex: Name the ray shown below:

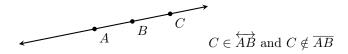


Answer: The ray is  $\overrightarrow{EF}$ .

Definition Collinear Points

Collinear points are points that all lie on the same straight line.

**Ex:** The points A, B and C are collinear points.




#### C ELEMENT RELATION

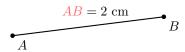
### Definition **Element Relation**

The relation is a point of (or "is an element of") is used to show that a point lies on a geometric figure, such as a line or segment. It is denoted by the symbol  $\in$ .

 $\mathbf{E}\mathbf{x}$ :



In this figure, point C lies on the line through points A and B, so  $C \in \stackrel{\longleftrightarrow}{AB}$ . However, C does not lie on the segment between A and B, so  $C \notin \overline{AB}$ .

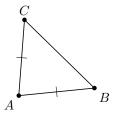

# D LENGTH

### Definition Length of a Line Segment

The **length** of a line segment is the distance between its two endpoints.

### Definition Length Notation

The length of a line segment is denoted by its endpoints, written as AB.




# Definition Equal Lengths -

Line segments are equal in length if they have the same length. We use tick marks to show they are equal.



Ex: Identify two segments that have the same length.

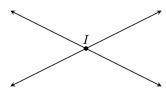


Answer: Segments  $\overline{AB}$  and  $\overline{AC}$  have the same length, as shown by their identical tick marks. Therefore, AB = AC.

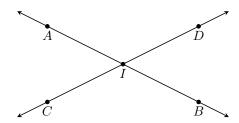
#### Method Measuring Length

We measure the length of a segment using a ruler by aligning one endpoint with the zero mark and reading the measurement at the other endpoint.

**Ex:** Measure the length of segment  $\overline{AB}$ .




Answer: By aligning a ruler with segment  $\overline{AB}$ , the length is measured as AB = 4 cm.


#### **E INTERSECTION POINT**

### Definition Intersection Point

An intersection point is a point where two or more geometric objects, such as lines or segments, meet.

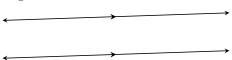


**Ex:** Find the intersection point of the lines  $\overleftrightarrow{AB}$  and  $\overleftrightarrow{CD}$ .




Answer: The intersection point is I.

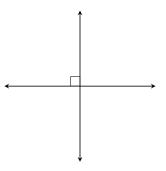
### F PARALLEL LINES


Definition Parallel Lines

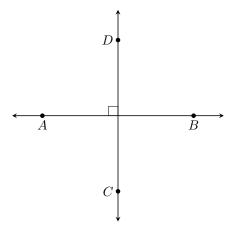
Two parallel lines are lines that never intersect, no matter how far they extend.



Definition Parallel Line Notation -


Parallel lines are indicated using matching arrowheads on each line.



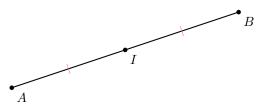

# **G PERPENDICULAR LINES**

Definition **Perpendicular Lines** 

Two perpendicular lines are lines that intersect at a right angle (90 degrees).



Ex: Identify the perpendicular lines in the figure below:




 $\textit{Answer:} \ \text{The lines} \ \overleftrightarrow{AB} \ \text{and} \ \overrightarrow{CD} \ \text{are perpendicular, as they intersect forming a right angle, indicated by the right-angle mark.}$ 

## H MIDPOINT AND PERPENDICULAR BISECTOR

Definition Midpoint of a Line Segment \_\_\_\_

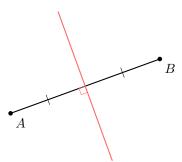
The **midpoint** of a line segment is a point that lies on the segment and divides it into two segments of equal length.



Proposition Midpoint Length Property -

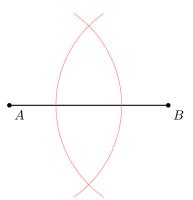
If point I is the midpoint of segment  $\overline{AB}$ , then  $AB = 2 \times AI$  and  $AI = \frac{AB}{2}$ .

Proof

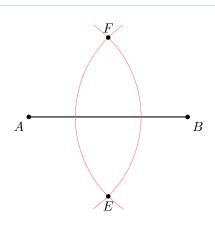

$$AB = AI + IB$$
 (*I* is the midpoint of  $\overline{AB}$ )  
=  $AI + AI$   
=  $2 \times AI$ 

Thus,  $AB = 2 \times AI$ . To find AI in terms of AB, we rearrange the equation:

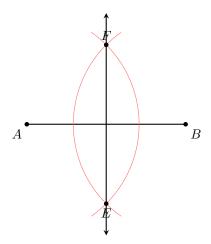
$$AI = \frac{AB}{2}.$$


Definition Perpendicular bisector \_\_\_\_\_

The perpendicular bisector of a line segment is a line which meets the segment at its midpoint perpendicularly.




Method Constructing the Perpendicular Bisector of  $\overline{AB}$ 


• Construct two arcs of circles with the same radius and centers at A and B.



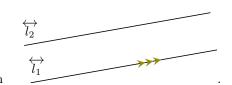
ullet The arcs intersect at points E and F.



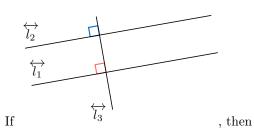
• The perpendicular bisector of  $\overline{AB}$  is the line  $\overleftrightarrow{EF}$ .

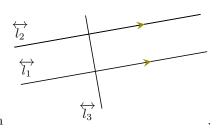


### I PROPERTIES OF PARALLEL LINES


Proposition Properties of Parallel Lines .

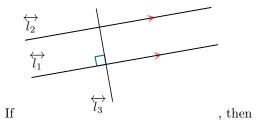
• If line  $\overrightarrow{l_1}$  is parallel to line  $\overrightarrow{l_2}$ , and line  $\overrightarrow{l_2}$  is parallel to line  $\overrightarrow{l_3}$ , then line  $\overrightarrow{l_1}$  is parallel to line  $\overrightarrow{l_3}$ .

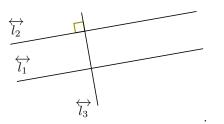




 $\overleftrightarrow{l_3}$ 






• If line  $\overrightarrow{l_1}$  is perpendicular to line  $\overrightarrow{l_3}$ , and line  $\overrightarrow{l_2}$  is perpendicular to line  $\overrightarrow{l_3}$ , then line  $\overrightarrow{l_1}$  is parallel to line  $\overrightarrow{l_2}$ .






( p

• If line  $\overrightarrow{l_1}$  is parallel to line  $\overrightarrow{l_2}$ , and line  $\overrightarrow{l_1}$  is perpendicular to line  $\overrightarrow{l_3}$ , then line  $\overrightarrow{l_2}$  is perpendicular to line  $\overrightarrow{l_3}$ .



