ELEMENTS OF GEOMETRY

A POINT

Definition **Point** –

A **point** is a single location in space, represented by a dot.

· Definition **Point Notation** –

A point is named using a capital letter, written as A.

Points have no size, shape, or dimension. They simply mark a position.

Ex: The diagram below shows three points labeled A, B, and C:

CA \bullet B

A •

B LINES, SEGMENTS AND RAYS

Definition **Line**

A line is a straight collection of points that extends infinitely in both directions.

- Definition Line Notation -

• A line can be named with a lowercase letter, written as \overleftrightarrow{l} .

$$\overleftrightarrow{l}$$

• A line is named using two points on it, written as \overrightarrow{AB} .

Ex: Name the line shown below:

Answer: The line is \overleftarrow{EF} .

Definition Line Segment

A line segment is a part of a line with two endpoints. It has a definite length.

1

Answer: The ray is \overrightarrow{EF} .

Definition Collinear Points
Collinear points are points that all lie on the same straight line.

Ex: The points A, B and C are collinear points.

C ELEMENT RELATION

- Definition **Element Relation**

The relation is a point of (or "is an element of") is used to show that a point lies on a geometric figure, such as a line or segment. It is denoted by the symbol \in .

Ex:

In this figure, point C lies on the line through points A and B, so $C \in \overleftrightarrow{AB}$. However, C does not lie on the segment between A and B, so $C \notin \overrightarrow{AB}$.

(°±°)

D LENGTH

Ex: Identify two segments that have the same length.

Answer: Segments \overline{AB} and \overline{AC} have the same length, as shown by their identical tick marks. Therefore, AB = AC.

Ex: Find the intersection point of the lines \overleftrightarrow{AB} and \overleftrightarrow{CD} .

(°±°

Answer: The intersection point is I.

F PARALLEL LINES

- Definition **Parallel Lines** Two **parallel lines** are lines that never intersect, no matter how far they extend.

Definition **Parallel Line Notation** Parallel lines are indicated using matching arrowheads on each line.

G PERPENDICULAR LINES

Definition **Perpendicular Lines**

Two **perpendicular lines** are lines that intersect at a right angle (90 degrees).

Ex: Identify the perpendicular lines in the figure below:

Answer: The lines \overleftrightarrow{AB} and \overleftrightarrow{CD} are perpendicular, as they intersect forming a right angle, indicated by the right-angle mark.

H MIDPOINT AND PERPENDICULAR BISECTOR

If point I is the midpoint of segment \overline{AB} , then $AB = 2 \times AI$ and $AI = \frac{AB}{2}$.

Definition **Perpendicular bisector** –

The **perpendicular bisector** of a line segment is a line which meets the segment at its midpoint perpendicularly.

Method Constructing the Perpendicular Bisector of \overline{AB} –

• Construct two arcs of circles with the same radius and centers at A and B.

• The arcs intersect at points E and F.

• The perpendicular bisector of \overline{AB} is the line \overleftarrow{EF} .

I PROPERTIES OF PARALLEL LINES

Proposition **Properties of Parallel Lines**

• If line $\overleftrightarrow{l_1}$ is parallel to line $\overleftrightarrow{l_2}$, and line $\overleftrightarrow{l_2}$ is parallel to line $\overleftrightarrow{l_3}$, then line $\overleftrightarrow{l_1}$ is parallel to line $\overleftrightarrow{l_3}$.

