EXPONENTIAL FUNCTIONS

A EXPONENTIAL FUNCTION

A.1 READING AND SKETCHING EXPONENTIAL FUNCTIONS

Ex 1: Find an approximation to the nearest integer, by reading the value from the graph of $f(x) = 3^x$:

1.
$$\leq 3^{1.5} <$$

$$2.$$
 $\leq 3^{0.5} <$

Ex 2: Find an approximation to the nearest integer, by reading the value from the graph of $f(x) = (0.5)^x$:

1.
$$\leq (0.5)^{-0.5} <$$

2.
$$\leq (0.5)^{-1.5} < \leq$$

Ex 3: For the function $f(x) = 2^x$, sketch the graph of f. (You may fill in a table of values for x = -2, -1, 0, 1, 2.)

Ex 4: For the function $f(x) = \left(\frac{1}{2}\right)^x$, sketch the graph of f. (You may fill in a table of values for x = -2, -1, 0, 1, 2.)

A.2 EVALUATING EXPONENTIAL FUNCTIONS

Ex 5: For $f(x) = 3^x$, evaluate:

1.
$$f(2) =$$

$$2. \ f(0) =$$

3.
$$f(-1) =$$

Ex 6: For $f(x) = 10^x$, evaluate:

1.
$$f(2) =$$

$$2. \ f(0) =$$

3.
$$f(-1) =$$

Ex 7: For $f(x) = \left(\frac{1}{2}\right)^x$, evaluate:

1.
$$f(-2) =$$

2.
$$f(-1) =$$

3.
$$f(0) =$$

4.
$$f(1) =$$

B EXPONENTIAL VS. LINEAR RELATIONSHIPS

B.1 RECOGNIZING LINEAR, EXPONENTIAL, OR NEITHER RELATIONSHIPS FROM TABLES

MCQ 8:

x	0	1	2	3
y	1	5	25	125

What is the relationship between the two variables?	B.2 RECOGNIZING LINEAR AND EXPONENTIAL RELATIONSHIPS IN REAL-LIFE CONTEXTS		
☐ linear relationship			
□ exponential relationship □ neither	MCQ 13: The number of infected people with Covid doubles each day. What is the relationship between the two variables (day and number of infected)?		
in inertiner	☐ linear relationship		
MCQ 9:	\square exponential relationship		
$\begin{bmatrix} x & 0 & 1 & 2 & 3 \end{bmatrix}$	\Box neither		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MCQ 14: A bus ticket costs \$2, plus an extra \$0.50 for each		
What is the relationship between the two variables?	additional zone crossed. What is the relationship between the number of zones crossed and the total price?		
☐ linear relationship	\Box linear relationship		
\square exponential relationship	\square exponential relationship		
\Box neither	\Box neither		
MCQ 10:	MCQ 15: The amount of money in a bank account increases by 5% each year due to compounded interest. What is the relationship between the two variables (year and amount)?		
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	\Box linear relationship		
	\Box exponential relationship		
What is the relationship between the two variables?	\Box neither		
☐ linear relationship ☐ exponential relationship	MCQ 16: A cyclist travels at a constant speed of 15 km per hour. What is the relationship between the number of hours and the distance traveled?		
\Box neither	□ linear relationship		
MCO 11	□ exponential relationship		
MCQ 11:	□ neither		
$\begin{array}{c c cccc} x & 0 & 1 & 2 & 3 \\ \hline y & 3 & 6 & 12 & 24 \\ \hline \end{array}$	C EXPONENTIAL MODELS		
What is the relationship between the two variables?	C.1. MODELING DEAL WORLD SITUATIONS WITH		
\Box linear relationship	C.1 MODELING REAL-WORLD SITUATIONS WITH EXPONENTIAL FUNCTIONS		
\square exponential relationship	Ex 17: A population of bacteria doubles every second. At time $x = 0$, there is a single bacterium. Find the function to model this growth.		
□ neither			
MCQ 12:	P(x) =		
	Ex 18: A species of bear is introduced to a large island off		
$[y \mid 2 \mid 5 \mid 10 \mid 17]$	Alaska where previously there were no bears. 6 pairs of bears were introduced in 1998. It is expected that the population will		
What is the relationship between the two variables?	increase according to $B(t) = B_0 \times (1.13)^t$ where t is the time, in years, since the introduction.		
☐ linear relationship	1. Find B_0 .		
\square exponential relationship	bears		
\square neither	2. Find the expected bear population in 2018.		
www.commeunjeu.com			
- · · · · · · · · · · · · · · · · · · ·	<u> </u>		

www.commeunjeu.com

	bear (round to the nearest integer)				
	Find the expected percentage increase in population from 1998 to 2018.				
	% (round to the nearest integer)				
Ex expe	19: Sarah buys a piece of artwork for \$1500 that is exted to appreciate (increase in value) by 8% each year.				
	Determine a model for A_n , the value of the artwork after n years.				
	$A_n =$				
	Is this an example of exponential growth? $\Box Yes$				
	\square No Calculate the estimated value of the artwork in 6 years' time.				
	\$ [(round to the nearest integer)				
Ex :	20: Maxime has an Uncle Scrooge coin worth \$500. n year, the coin's value increases by 20%.				
	Determine a model for C_n , the value of the coin after n years.				
	$C_n = $				
	Is this an example of exponential growth? $\square Yes$ $\square No$				
3.	Calculate the estimated value of the coin in 6 years' time.				
	(round to the nearest integer)				
Ex :	21: A certain radioactive substance loses 12% of its s each year. Initially, the sample weighs 200 g.				
	Determine a model for M_n , the mass (in grams) remaining after n years.				
	$M_n =$				
	Is this an example of exponential decay? $\square Yes$ $\square No$				
3.	Calculate the mass remaining after 10 years.				
	g (round to the nearest integer)				