EXPONENTIAL FUNCTIONS

A EXPONENTIAL FUNCTION

A.1 READING AND SKETCHING EXPONENTIAL FUNCTIONS

Ex 1: Find an approximation to the nearest integer, by reading the value from the graph of $f(x) = 3^x$:

1.
$$\boxed{5} \le 3^{1.5} < \boxed{6}$$

2.
$$\boxed{1} \le 3^{0.5} < \boxed{2}$$

 ${\it Answer:}$ The values can be estimated visually using the graph above:

1. We read $3^{1.5} \approx 5.2$, so the answer is **between 5 and 6.**

$$5 \le 3^{1.5} < 6$$

2. We read $3^{0.5} \approx 1.7$, so the answer is **between 1 and 2.**

$$\boxed{1} \leq 3^{0.5} < \boxed{2}$$

Ex 2: Find an approximation to the nearest integer, by reading the value from the graph of $f(x) = (0.5)^x$:

1.
$$\boxed{2} \le (0.5)^{-0.5} < \boxed{3}$$

2.
$$\boxed{1} \le (0.5)^{-1.5} < \boxed{2}$$

Answer: The values can be estimated visually using the graph above:

1. We read $(0.5)^{-0.5} \approx 1.41$, so the answer is **between 1 and 2.**

$$1 \le (0.5)^{-0.5} < 2$$

2. We read $(0.5)^{-1.5} \approx 2.83$, so the answer is **between 2 and**

$$2 \le (0.5)^{-1.5} < 3$$

Ex 3: For the function $f(x) = 2^x$, sketch the graph of f. (You may fill in a table of values for x = -2, -1, 0, 1, 2.)

Answer: Fill in the table of values:

x	-2	-1	0	1	2
f(x)	0.25	0.5	1	2	4

Plot the points and draw the graph:

Ex 4: For the function $f(x) = \left(\frac{1}{2}\right)^x$, sketch the graph of f. (You may fill in a table of values for x = -2, -1, 0, 1, 2.)

Answer: Fill in the table of values:

x	-2	-1	0	1	2
f(x)	4	2	1	0.5	0.25

Plot the points and draw the graph:

A.2 EVALUATING EXPONENTIAL FUNCTIONS

Ex 5: For $f(x) = 3^x$, evaluate:

1.
$$f(2) = 9$$

2.
$$f(0) = \boxed{1}$$

3.
$$f(-1) = \boxed{\frac{1}{3}}$$

Answer:

1.
$$f(2) = 3^2$$

= 9

2.
$$f(0) = 3^0$$

= 1

3.
$$f(-1) = 3^{-1}$$

= $\frac{1}{3^1}$
= $\frac{1}{3}$

Ex 6: For $f(x) = 10^x$, evaluate:

1.
$$f(2) = 100$$

2.
$$f(0) = \boxed{1}$$

3.
$$f(-1) = \frac{1}{10}$$

Answer:

1.
$$f(2) = 10^2$$

= 100

2.
$$f(0) = 10^0$$

= 1

3.
$$f(-1) = 10^{-1}$$

= $\frac{1}{10^1}$
= $\frac{1}{10}$

Ex 7: For $f(x) = \left(\frac{1}{2}\right)^x$, evaluate:

1.
$$f(-2) = \boxed{4}$$

2.
$$f(-1) = 2$$

3.
$$f(0) = \boxed{1}$$

4.
$$f(1) = \boxed{\frac{1}{2}}$$

Answer:

1.
$$f(-2) = \left(\frac{1}{2}\right)^{-2}$$
$$= \left(\frac{2}{1}\right)^{2}$$
$$= 2^{2}$$
$$= 4$$

2.
$$f(-1) = \left(\frac{1}{2}\right)^{-1}$$
$$= \left(\frac{2}{1}\right)^{1}$$
$$= 2$$

$$3. \ f(0) = \left(\frac{1}{2}\right)^0$$
$$= 1$$

4.
$$f(1) = \left(\frac{1}{2}\right)^1$$

= $\frac{1}{2}$

B EXPONENTIAL VS. LINEAR RELATIONSHIPS

B.1 RECOGNIZING LINEAR, EXPONENTIAL, OR NEITHER RELATIONSHIPS FROM TABLES

MCQ 8:

x	0	1	2	3
y	1	5	25	125

What is the relationship between the two variables?

- ☐ linear relationship
- \boxtimes exponential relationship
- \square neither

Answer: For each increase of 1 in x, the value of y is multiplied by 5.

$$x: 0 \xrightarrow{+1} 1 \xrightarrow{+1} 2 \xrightarrow{+1} 3$$
$$y: 1 \xrightarrow{\times 5} 5 \xrightarrow{\times 5} 25 \xrightarrow{\times 5} 125$$

So, this relationship is **exponential** $(y = 5^x)$.

MCQ 9:

x	0	1	2	3
y	0	20	40	60

What is the relationship between the two variables?

- □ linear relationship
- \Box exponential relationship
- $\hfill\Box$ neither

Answer: For each increase of 1 in x, the value of y increases by 20.

$$x:0$$
 $\xrightarrow{+1}$ 1 $\xrightarrow{+1}$ 2 $\xrightarrow{+1}$ 3 $y:0$ $\xrightarrow{+20}$ 20 $\xrightarrow{+20}$ 40 $\xrightarrow{+20}$ 60

So, this relationship is **linear** (y = 20x).

MCQ 10:

\boldsymbol{x}	0	2	4	6
y	1	6	11	16

What is the relationship between the two variables?

- ⊠ linear relationship
- \square exponential relationship
- □ neither

Answer: For each increase of 2 in x, the value of y increases by 5.

$$x: 0 \xrightarrow{+2} 2 \xrightarrow{+2} 4 \xrightarrow{+2} 6$$

$$y: 1 \xrightarrow{+5} 6 \xrightarrow{+5} 11 \xrightarrow{+5} 16$$

So, this relationship is **linear** (y = 1 + 2.5x).

MCQ 11:

\overline{x}	0	1	2	3
\overline{y}	3	6	12	24

What is the relationship between the two variables?

- ☐ linear relationship
- ⊠ exponential relationship
- □ neither

Answer: For each increase of 1 in x, the value of y is multiplied by 2.

$$x: 0 \xrightarrow{+1} 1 \xrightarrow{+1} 2 \xrightarrow{+1} 3$$

 $y: 3 \xrightarrow{\times 2} 6 \xrightarrow{\times 2} 12 \xrightarrow{\times 2} 24$

So, this relationship is **exponential** $(y = 3 \times 2^x)$.

MCQ 12:

\overline{x}	0	1	2	3
y	2	5	10	17

What is the relationship between the two variables?

- ☐ linear relationship
- \square exponential relationship
- \boxtimes neither

Answer: The differences between the y-values are not constant:

$$y: 2 \xrightarrow{+3} 5 \xrightarrow{+5} 10 \xrightarrow{+7} 17$$

The ratios between y-values are also not constant:

$$\frac{5}{2} = 2.5$$
, $\frac{10}{5} = 2$, $\frac{17}{10} = 1.7$

So, this relationship is neither linear nor exponential.

B.2 RECOGNIZING LINEAR AND EXPONENTIAL RELATIONSHIPS IN REAL-LIFE CONTEXTS

MCQ 13: The number of infected people with Covid doubles each day. What is the relationship between the two variables (day and number of infected)?

- ☐ linear relationship
- ⊠ exponential relationship
- \square neither

Answer: For each increase of 1 in the number of days, the number of infected people is multiplied by 2. So, this relationship is **exponential**.

MCQ 14: A bus ticket costs \$2, plus an extra \$0.50 for each additional zone crossed. What is the relationship between the number of zones crossed and the total price?

- ⊠ linear relationship
- □ exponential relationship
- □ neither

Answer: For each increase of 1 in the number of zones, the total price increases by \$0.50. So, this relationship is **linear**.

MCQ 15: The amount of money in a bank account increases by 5% each year due to compounded interest. What is the relationship between the two variables (year and amount)?

 \square linear relationship

 \square neither

Answer: For each increase of 1 in the number of years, the amount is multiplied by 1.05. So, this relationship is **exponential**.

MCQ 16: A cyclist travels at a constant speed of 15 km per hour. What is the relationship between the number of hours and the distance traveled?

⊠ linear relationship

□ exponential relationship

 \square neither

Answer: For each increase of 1 in the number of hours, the distance increases by 15 km. So, this relationship is **linear**.

C EXPONENTIAL MODELS

C.1 MODELING REAL-WORLD SITUATIONS WITH EXPONENTIAL FUNCTIONS

Ex 17: A population of bacteria doubles every second. At time x = 0, there is a single bacterium.

Find the function to model this growth.

$$P(x) = 2^x$$

Answer: Let P(x) be the population of bacteria after x seconds. We have:

$$P(0) = 1 = 2^0$$

$$P(1) = 2 = 2^1$$

$$P(2) = 4 = 2^2$$

. . .

$$P(x) = 2^x$$

So, the population after x seconds is $P(x) = 2^x$.

Ex 18: A species of bear is introduced to a large island off Alaska where previously there were no bears. 6 pairs of bears were introduced in 1998. It is expected that the population will increase according to $B(t) = B_0 \times (1.13)^t$ where t is the time, in years, since the introduction.

1. Find B_0 .

2. Find the expected bear population in 2018.

138 bear (round to the nearest integer)

3. Find the expected percentage increase in population from 1998 to 2018.

1050 % (round to the nearest integer)

Answer:

1. $B_0 = 6$ pairs = 12 bears.

2. 2018 is 20 years after 1998, so t = 20.

$$B(20) = 12 \times (1.13)^{20}$$

$$\approx 12 \times 11.495$$

$$\approx 137.94$$

$$\approx 138 \text{ bears}$$

3. The expected percentage increase is

$$\frac{138 - 12}{12} \times 100\% = 1050\%$$

Ex 19: Sarah buys a piece of artwork for \$1500 that is expected to appreciate (increase in value) by 8% each year.

1. Determine a model for A_n , the value of the artwork after n years.

$$A_n = \boxed{1500 \times (1.08)^n}$$

2. Is this an example of exponential growth? Yes

3. Calculate the estimated value of the artwork in 6 years' time.

$$2380$$
 (round to the nearest integer)

Answer:

1. Initial value $A_0 = 1500 , annual growth rate r = 8%. The model is:

$$A_0 = 1500$$

$$A_1 = 1500 \times 1.08$$

$$A_2 = 1500 \times (1.08)^2$$

$$A_3 = 1500 \times (1.08)^3$$

$$\vdots$$

$$A_n = 1500 \times (1.08)^n$$

So,
$$A_n = 1500 \times (1.08)^n$$
.

2. Yes, this is an example of exponential growth because the value is multiplied by the same factor (1.08) each year.

3. Substitute n = 6:

$$A_6 = 1500 \times (1.08)^6$$

 $\approx 1500 \times 1.586874$
 ≈ 2380

The estimated value in 6 years is \$2 380 (rounded to the nearest integer).

Ex 20: Maxime has an Uncle Scrooge coin worth \$500. Each year, the coin's value increases by 20%.

1. Determine a model for C_n , the value of the coin after n years.

$$C_n = \boxed{500 \times (1.20)^n}$$

- 2. Is this an example of exponential growth? Yes
- 3. Calculate the estimated value of the coin in 6 years' time.

$$1493$$
 (round to the nearest integer)

Answer:

1. Initial value $C_0 = 500 , annual growth rate r = 20%. The model is:

$$C_0 = 500$$

$$C_1 = 500 \times 1.20$$

$$C_2 = 500 \times (1.20)^2$$

$$C_3 = 500 \times (1.20)^3$$

$$\vdots$$

$$C_n = 500 \times (1.20)^n$$

So,
$$C_n = 500 \times (1.20)^n$$
.

- 2. Yes, this is an example of exponential growth because the value is multiplied by the same factor (1.20) each year.
- 3. Substitute n = 6:

$$C_6 = 500 \times (1.20)^6$$

 $\approx 500 \times 2.985984$
 ≈ 1493

The estimated value in 6 years is \$1490 (rounded to the nearest integer).

Ex 21: A certain radioactive substance loses 12% of its mass each year. Initially, the sample weighs 200 g.

1. Determine a model for M_n , the mass (in grams) remaining after n years.

$$M_n = 200 \times (0.88)^n$$

- 2. Is this an example of exponential decay? |Yes|
- 3. Calculate the mass remaining after 10 years.

56 g (round to the nearest integer)

Answer:

1. Initial mass $M_0=200~{\rm g},$ annual loss rate = 12%. The model is:

$$M_0 = 200$$

$$M_1 = 200 \times 0.88$$

$$M_2 = 200 \times (0.88)^2$$

$$M_3 = 200 \times (0.88)^3$$

$$\vdots$$

$$M_n = 200 \times (0.88)^n$$

So,
$$M_n = 200 \times (0.88)^n$$
.

- 2. Yes, this is an example of exponential decay because the mass is multiplied by the same factor (0.88) each year.
- 3. Substitute n = 10:

$$M_{10} = 200 \times (0.88)^{10}$$

 $\approx 200 \times 0.2886$
 ≈ 56

So, the mass remaining after 10 years is 56 g (rounded to the nearest integer).