A DEFINITIONS

A.1 FINDING THE SUBJECTS

MCQ 1: For a triangle formula

, we have the

Find the subject of the formula.

- \square A: the area
- \Box b: the base
- \Box h: the height

MCQ 2: In an electrical circuit, we have the formula

$$U = RI$$

.Find the subject of the formula.

- \square *U*: the voltage
- \square R: the resistance
- \square I: the current

MCQ 3: In physics, we have the formula

$$v = \frac{d}{t}$$

.Find the subject of the formula.

- \square v: the velocity
- \Box d: the distance
- \Box t: the time

B PROBLEM SOLVING

B.1 CALCULATING MEASURES IN GEOMETRY

Ex 4: Find the area of the figure:

Ex 5: The area of the rectangle is $6\,\mathrm{m}^2$ and the length of one side is $3\,\mathrm{m}$.

Find the width of the rectangle.

Ex 6: The perimeter of the rectangle is 10 m.

Find the width of the rectangle.

$$w = \boxed{}$$
 m

Ex 7: The area of a square is $10 \,\mathrm{cm}^2$.

Find the length of the side of the square (round to 2 decimal places).

Ex 8: The area of a circle is $10 \,\mathrm{cm}^2$. Recall the formula: $A = \pi r^2$.

Find the radius of the circle (round your answer to 2 decimal places).

Ex 9: The volume of the cube is $10 \,\mathrm{m}^3$.

Find the length of the side of the cube (round to 2 decimal places and $\sqrt[3]{10} = 2.1544...$).

$$x =$$
 n

B.2 CALCULATING MEASURES IN PHYSICS

Ex 10: A car travels at a constant speed of 120 km/h for 2 hours.

Find the distance traveled by the car. Recall the formula: $v = \frac{d}{t}$.

 $d = \boxed{km}$

Ex 11: A circuit has a resistance of 5 Ω and a voltage of 20 V

Find the current flowing through the circuit. Recall the formula: U=RI.

$$I = \boxed{ }$$
 A

Ex 12: The formula $F = \frac{9}{5}C + 32$ converts a temperature from Celsius (C) to Fahrenheit (F).

Given a temperature of 68°F, find the temperature in Celsius.

$$C = \bigcirc$$
 °C

Ex 13: The formula $E_p = mgh$ calculates the gravitational potential energy (E_p) of an object, where m is the mass in kilograms, g is the acceleration due to gravity (9.8 m/s²), and h is the height in meters.

Given an object with a mass of 10 kg and a gravitational potential energy of 490 J, find the height at which the object is located.

$$h = \boxed{}$$
 m

C REARRANGING FORMULAE

C.1 REARRANGING LINEAR EQUATIONS

Ex 14: Rearrange the equation 3x + 4y = 13 to make y the subject.

$$y =$$

Ex 15: Rearrange the equation 5x - 2y = 10 to make y the subject.

$$y =$$

Ex 16: Rearrange the equation 3y + 2x = -x + 3 to make y the subject.

$$y =$$

Ex 17: Rearrange the equation 7y - 5x = 2x + 14 to make y the subject.

$$y =$$

C.2 REARRANGING GEOMETRIC FORMULAE

MCQ 18: The formula for the circumference (perimeter) of a circle is $C=2\pi r.$

Rearrange the formula to make r the subject.

Choose the correct answer:

 $\Box r = 2\pi C$

 $\Box 2\pi r = C$

$$\Box \ r = \frac{C}{2\pi}$$

MCQ 19: The formula for the volume of a cube is $V = s^3$. Rearrange the formula to make s the subject.

Choose the correct answer:

 $\square \ s = V^3$

 $\square s = \frac{V}{3}$

 $\square \ s = \sqrt[3]{V}$

MCQ 20: The formula for the area of a triangle is $A = \frac{1}{2}bh$. Rearrange the formula to make h the subject.

Choose the correct answer:

 $\Box h = \frac{b}{2A}$

 $\Box h = \frac{A}{2b}$

 $\Box h = \frac{2A}{b}$

C.3 REARRANGING PHYSICS FORMULAE

MCQ 21: The formula $F = \frac{9}{5}C + 32$ converts a temperature from Celsius (C) to Fahrenheit (F).

Rearrange the formula to make C the subject.

Choose the correct answer:

 $\Box C = \frac{5}{9}(F - 32)$

 $\Box C = \frac{9}{5}(F - 32)$

 $\Box C = \frac{5}{9}F + 32$

MCQ 22: The formula $v = \frac{d}{t}$ relates speed (v), distance (d), and time (t).

Rearrange the formula to make t the subject.

Choose the correct answer:

 $\Box \ t = \frac{d}{v}$

 $\Box t = \frac{v}{d}$

 $\Box t = dv$

MCQ 23: The formula U = RI relates voltage (U), resistance (R), and current (I).

Rearrange the formula to make I the subject.

Choose the correct answer:

$$\Box I = \frac{U}{R}$$

$$\Box I = UR$$

$$\Box I = \frac{R}{U}$$

MCQ 24: The formula $E = \frac{1}{2}mv^2$ relates kinetic energy (E), mass (m), and speed (v).

Rearrange the formula to make v the subject.

Choose the correct answer:

$$\square \ v = \sqrt{\frac{2E}{m}}$$

$$\square \ v = \frac{E}{m}$$

$$\square \ v = \frac{2E}{m}$$

C.4 REARRANGING RATIO EQUATIONS

Ex 25: Rearrange the equation $\frac{2}{y} = \frac{x}{6}$ to make y the subject:

$$y =$$

Ex 26: Rearrange the equation $\frac{1}{x} = \frac{2}{y}$ to make y the subject:

$$y = \boxed{}$$

Ex 27: Rearrange the equation $\frac{x}{2} = \frac{4}{y}$ to make y the subject:

$$y =$$

Ex 28: Rearrange the equation $\frac{y}{x} = \frac{4}{3}$ to make y the subject:

$$y =$$

D CONSTRUCTING FORMULAE

D.1 MODELING LINEAR RELATIONSHIPS WITH ALGEBRA

Ex 29: A mechanic charges a \$40 call-out fee and \$30 per hour thereafter.

Find the mechanic's fee M for a job which takes x hours.

$$M =$$

Ex 30: A car rental company charges a fixed distance of 50 km included in the rental and 15 km for each extra hour of rental. Find the total distance D the car can travel in terms of the rental time x (in hours).

Ex 31: A gym membership includes a one-time joining fee of \$25 and a monthly fee of \$40.

Find the total cost C after x months.

D.2 MODELING AREAS AND VOLUMES WITH ALGEBRA: LEVEL 1

Ex 32: A right-angled triangle has a base length of x + 2 units and a height of x units. Find the area A of the triangle.

Ex 33: A garden is in the shape of a semi-circle with diameter x meters.

Find the area A of the garden in terms of the diameter x of the semi-circle.

Ex 34: The door is composed of a rectangle with height 10 meters and width x meters, topped with a semi-circle of diameter x meters.

Find the area A of the door in terms of x.

Ex 35: The door consists of a square with side length x meters and a quarter-circle with radius x meters.

Find the area A of the door in terms of x.

D.3 MODELING AREAS AND VOLUMES WITH ALGEBRA: LEVEL 2

Ex 36: You have 28 meters of fencing to enclose a rectangular vegetable garden. Let x be the length of the rectangle and y be the width. Find the area A of the garden in terms of x.

Ex 37: A farmer has 4000 meters of fencing to enclose a rectangular field along a river. Because one side is along the river, fencing is required on only three sides. Let x be the length perpendicular to the river and y the length parallel to the river. Find the area A of the field in terms of x.

Ex 38: A sheet of paper $10 \text{ cm} \times 10 \text{ cm}$ is made into an open box by cutting x-cm squares out of each corner and folding up the sides. Find the volume V of the box in terms of x.

D.4 FINDING PATTERNS AND WRITING FORMULAE

Ex 39: Look at the following matchstick pattern:

diagram 1 diagram 2 diagram 3 Find a formula for the number of match sticks in the n-th diagram.

 ${\bf Number\ of\ match sticks} = \boxed{}$

Ex 40: Look at the following triangular matchstick pattern:

Find a formula for the number of matchsticks in the *n*-th diagram.

 ${\bf Number\ of\ match sticks} = \boxed{\hspace{1cm}}$

Ex 41: Find the *n*-th term of the sequence $5, 10, 15, 20, 25, \ldots$

$$n$$
-th term = _____.

Ex 42: Find the n-th term of the sequence 6, 12, 18, 24, 30, 36, ...

$$n$$
-th term =

Ex 43: Find the *n*-th term of the sequence $1, 3, 5, 7, 9, 11, \ldots$

$$n$$
-th term =

Ex 44: Find the *n*-th term of the sequence $2, 4, 8, 16, 32, 64, \ldots$

$$n$$
-th term =

Ex 45: Find the *n*-th term of the sequence $1, 4, 9, 16, 25, 36, \ldots$

$$n$$
-th term = $\boxed{}$.

Ex 46: Find the *n*-th term of the sequence $\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \dots$

$$n$$
-th term =