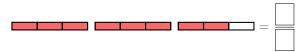
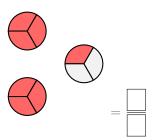

A DEFINITIONS

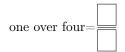
A.1 FINDING FRACTIONS


 $\mathbf{E}\mathbf{x}$ 1: A bar represents 1. Find the fraction that represents the shaded part:

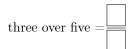
Ex 2: A bar represents 1. Find the fraction that represents the shaded part:


 \mathbf{Ex} 3: A bar represents 1. Find the fraction that represents the shaded part:

 $\mathbf{Ex}\ \mathbf{4:}\ \mathbf{A}$ circle represents 1. Find the fraction that represents the shaded part:



Ex 5: A circle represents 1. Find the fraction that represents the shaded part:

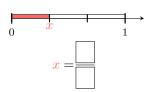


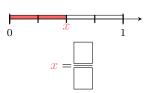
A.2 WRITING FRACTIONS FROM WORDS

Ex 6: Write as fraction:

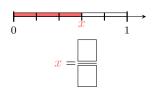
Ex 7: Write as fraction:

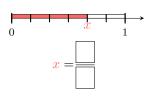
Ex 8: Write as fraction:

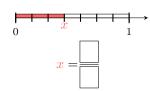

Ex 9: Write as fraction:


B ON THE NUMBER LINE

B.1 FINDING FRACTIONS WITH BAR FRACTION MODEL

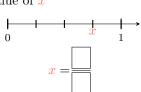

Ex 10: Find the value of x


Ex 11: Find the value of x

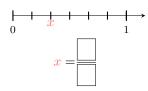

Ex 12: Find the value of x

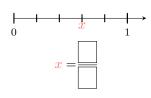
Ex 13: Find the value of x

Ex 14: Find the value of x

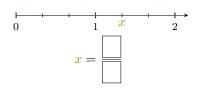


B.2 FINDING FRACTIONS

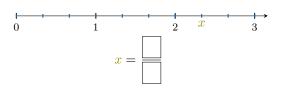

Ex 15: Find the value of x


Ex 16: Find the value of x

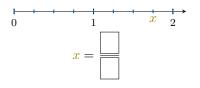
Ex 17: Find the value of x

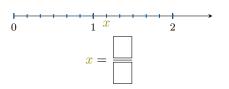


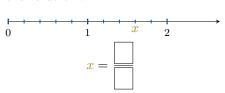
Ex 18: Find the value of x

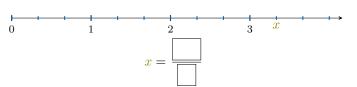


B.3 FINDING FRACTIONS GREATER THAN 1


Ex 19: Find the value of x


Ex 20: Find the value of x


Ex 21: Find the value of x


Ex 22: Find the value of x

Ex 23: Find the value of x

Ex 24: Find the value of x

C EQUIVALENT FRACTIONS

C.1 FINDING THE MISSING NUMERATOR

Ex 25:

$$\frac{2}{4} = \boxed{\frac{2}{2}}$$

Ex 26:

$$\frac{9}{6} = \boxed{\frac{2}{2}}$$

Ex 27:

$$\frac{5}{10} = \boxed{\frac{2}{2}}$$

Ex 28:

$$\frac{16}{12} = \frac{}{3}$$

Ex 29:

$$\frac{4}{10} = \boxed{\frac{}{5}}$$

C.2 FINDING THE MISSING NUMERATOR

Ex 30:

$$\frac{1}{2} = \boxed{\frac{1}{4}}$$

Ex 31:

$$\frac{4}{3} = \frac{15}{15}$$

Ex 32:

$$\frac{3}{4} = \boxed{\frac{1}{12}}$$

Ex 33:

$$\frac{5}{6} = \frac{12}{12}$$

Ex 34:

$$\frac{7}{8} = \frac{}{32}$$

C.3 FINDING THE MISSING DENOMINATOR

Ex 35:

$$\frac{4}{10} = \frac{2}{\boxed{}}$$

Ex 36:

$$\frac{6}{12} = \boxed{ }$$

Ex 37:

$$\frac{9}{6} = \frac{3}{6}$$

Ex 38:

$$\frac{12}{10} = \frac{6}{\boxed{}}$$

C.4 FINDING THE MISSING DENOMINATOR

Ex 39:

$$\frac{2}{5} = \frac{6}{1}$$

Ex 40:

$$\frac{2}{3} = \frac{8}{3}$$

Ex 41:

$$\frac{3}{5} = \frac{9}{1}$$

Ex 42:

$$\frac{4}{7} = \frac{12}{1}$$

Ex 43:

$$\frac{5}{9} = \frac{20}{}$$

D SIMPLIFICATION

D.1 SIMPLIFYING FRACTIONS

Ex 44: Simplify:

$$\frac{4}{6} = \boxed{}$$

Ex 45: Simplify:

$$\frac{2}{4} = \boxed{}$$

Ex 46: Simplify:

$$\frac{10}{8} = \frac{10}{100}$$

Ex 47: Simplify:

$$\frac{6}{9} = \frac{}{}$$

D.2 SIMPLIFYING FRACTIONS

Ex 48: Simplify:

$$\frac{4}{6} = \boxed{}$$

Ex 49: Simplify:

$$\frac{24}{16} = \boxed{}$$

Ex 50: Simplify:

$$\frac{12}{20} = \boxed{}$$

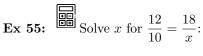
Ex 51: Simplify:

$$\frac{30}{100} = \boxed{}$$

Ex 52: Simplify:

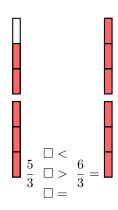
$$\frac{25}{100} = \boxed{ }$$

E CROSS MULTIPLICATION


E.1 SOLVING PROPORTIONS USING CROSS-MULTIPLICATION

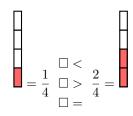
Ex 53: Solve x for $\frac{12}{4} = \frac{x}{6}$:

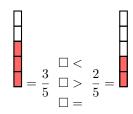
$$x =$$


Ex 54: Solve x for $\frac{11}{10} = \frac{x}{5}$:

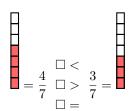
$$x =$$

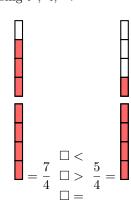
$$x =$$


Ex 56: Solve
$$x$$
 for $\frac{27}{x} = \frac{30}{10}$: $x = \frac{30}{10}$


F ORDERING FRACTIONS

F.1 COMPARING WITH SAME DENOMINATOR WITH BAR MODELS


Ex 57: Compare using >, <, =:


Ex 58: Compare using >, <, =:

Ex 59: Compare using >, <, =:

Ex 60: Compare using >, <, =:

Ex 61: Compare using >, <, =:

F.2 COMPARING WITH SAME DENOMINATOR

Ex 62: Compare using >, <, =:

$$\begin{array}{c} \square < \\ \frac{7}{3} \square > \frac{6}{3} \\ \square = \end{array}$$

Ex 63: Compare using >, <, =:

$$\begin{array}{c} \square < \\ \frac{5}{4} \square > \frac{3}{4} \\ \square = \end{array}$$

Ex 64: Compare using >, <, =:

$$\begin{array}{ccc}
 & \square < \\
\frac{2}{6} & \square > \frac{4}{6}
\end{array}$$

Ex 65: Compare using >, <, =:

$$\begin{array}{c} \square < \\ \frac{7}{5} \square > \frac{3}{5} \end{array}$$

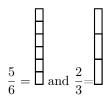
Ex 66: Compare using >, <, =:

$$\begin{array}{c} \square < \\ \frac{3}{8} \square > \frac{6}{8} \end{array}$$

F.3 COMPARING FRACTIONS WITH DIFFERENT DENOMINATORS

Ex 67: Compare using >, <, =:

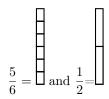
$$\begin{array}{c} \square < \\ \frac{3}{4} \square > \frac{1}{2} \\ \square = \end{array}$$


Hint: color the bars below to help you compare the fractions.

$$\frac{3}{4} = \boxed{\begin{array}{c} \\ \\ \\ \end{array}} \text{ and } \frac{1}{2} = \boxed{}$$

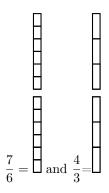
Ex 68: Compare using >, <, =:

$$\begin{array}{c}
\square < \\
\frac{5}{6} \square > \frac{2}{3} \\
\square =
\end{array}$$


Hint: color the bars below to help you compare the fractions.

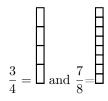
Ex 69: Compare using >, <, =:

$$\begin{array}{c} \square < \\ \frac{5}{6} \square > \frac{1}{2} \\ \square = \end{array}$$


Hint: color the bars below to help you compare the fractions.

Ex 70: Compare using >, <, =:

$$\begin{array}{c}
\square < \\
\frac{7}{6} \square > \frac{4}{3} \\
\square =
\end{array}$$


Hint: color the bars below to help you compare the fractions.

Ex 71: Compare using >, <, =:

$$\begin{array}{c} \square < \\ \frac{3}{4} \square > \frac{7}{8} \end{array}$$

Hint: color the bars below to help you compare the fractions.

F.4 COMPARING FRACTIONS TO REAL-WORLD PROBLEMS

MCQ 72: Hugo spends $\frac{3}{8}$ of his money on Pokemon cards and $\frac{1}{4}$ of his money to buy a tennis racket. On which does he spend more money?

- ☐ Pokemon cards
- ☐ Tennis racquet

MCQ 73: Sophie spends $\frac{1}{2}$ of her money on clothes and $\frac{3}{8}$ of her money on books. On which does she spend more money?

- \square Clothes
- □ Books

MCQ 74: For her cake recipe, Sarah uses $\frac{2}{5}$ of a cup of butter and $\frac{3}{10}$ of a cup of sugar. Which ingredient does she use more of?

- □ Butter
- □ Sugar

MCQ 75: In Class A, $\frac{6}{10}$ of the students are girls, and in Class B, $\frac{13}{20}$ of the students are girls. In which class is the proportion of girls higher?

- □ Class A
- □ Class B

F.5 COMPARING FRACTIONS WITH UNLIKE DENOMINATORS

Ex 76:

$$\frac{3}{4} \square > \frac{5}{6}$$

Ex 77:

$$\begin{array}{c}
\square < \\
\frac{7}{8} \square > \frac{9}{10}
\end{array}$$

Ex 78:

$$\frac{1}{5} \square > \frac{2}{3}$$

Ex 79:

$$\begin{array}{c}
\square < \\
\frac{2}{3} \square > \frac{3}{4} \\
\square =
\end{array}$$

G ADDITION AND SUBTRACTION WITH COMMON DENOMINATORS

G.1 ADDING FRACTIONS WITH COMMON DENOMINATORS

Ex 80:

$$\frac{1}{4} + \frac{2}{4} = \boxed{}$$

Ex 81:

$$\frac{3}{5} + \frac{1}{5} =$$

Ex 82:

$$\frac{2}{6} + \frac{3}{6} =$$

Ex 83:

$$\frac{2}{3} + \frac{2}{3} = \boxed{}$$

Ex 84:

$$\frac{4}{5} + \frac{2}{5} = \boxed{\boxed{}}$$

G.2 SUBTRACTING FRACTIONS WITH COMMON DENOMINATORS

Ex 85:

$$\frac{3}{4} - \frac{2}{4} = \boxed{}$$

Ex 86:

$$\frac{4}{5} - \frac{3}{5} = \boxed{}$$

Ex 87:

$$\frac{3}{4} - \frac{1}{4} = \boxed{\boxed{}}$$

Ex 88:

$$\frac{4}{3} - \frac{2}{3} =$$

Ex 89:

$$\frac{7}{6} - \frac{2}{6} = \boxed{}$$

H ADDITION AND SUBTRACTION WITH DIFFERENT DENOMINATORS

H.1 ADDING FRACTIONS

Ex 90:

$$\frac{2}{5} + \frac{3}{10} = \boxed{}$$

Ex 91:

$$\frac{1}{4} + \frac{3}{8} =$$

Ex 92:

$$\frac{2}{3} + \frac{1}{6} =$$

Ex 93:

$$\frac{3}{5} + \frac{2}{15} =$$

Ex 94:

$$\frac{3}{10} + \frac{2}{5} = \boxed{}$$

Ex 95:

$$\frac{3}{8} + \frac{1}{2} = \boxed{\boxed{}}$$

H.2 SUBTRACTING FRACTIONS

Ex 96:

$$\frac{2}{5} - \frac{3}{10} = \boxed{}$$

$$= \boxed{}$$

Ex 97:

$$\frac{7}{6} - \frac{1}{3} = \boxed{\boxed{}} - \boxed{\boxed{}}$$
$$= \boxed{\boxed{}}$$

Ex 98:

$$\frac{7}{8} - \frac{3}{4} = \boxed{\boxed{}} - \boxed{\boxed{}}$$

$$= \boxed{\boxed{}}$$

Ex 99:

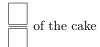
$$\frac{5}{3} - \frac{5}{9} = \boxed{-}$$

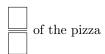
Ex 100:

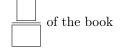
$$\frac{7}{2} - \frac{7}{4} = \boxed{\boxed{}}$$

$$= \boxed{\boxed{}}$$

H.3 SOLVING REAL-WORLD PROBLEMS


Ex 101: Louis has a whole cake. He cuts it into 8 equal slices and eats 3 slices. What fraction of the whole cake remains?


Ex 102: Today, Louis eats $\frac{1}{2}$ of a croissant. Then, Louis eats $\frac{1}{4}$ of another croissant. How much croissant did Louis eat in total?


Ex 103: At the beginning, there are $\frac{5}{6}$ of a cake. After eating, there are $\frac{2}{3}$ of the cake. What quantity of cake did Louis eat?

Ex 104: At the beginning, there are $\frac{7}{8}$ of a pizza. After eating, there are $\frac{3}{4}$ of the pizza. What quantity of pizza did Louis eat?

Ex 105: Louis read $\frac{2}{5}$ of his book on Saturday and $\frac{3}{10}$ of his book on Sunday. How much of his book did Louis read in total?

H.4 ADDING FRACTIONS WITH UNLIKE DENOMINATORS

Ex 106: Calculate and simplify:

$$\frac{2}{3} + \frac{3}{5} =$$

Ex 107: Calculate and simplify:

$$\frac{1}{2} + \frac{2}{3} = \boxed{}$$

Ex 108: Calculate and simplify:

$$\frac{3}{2} + \frac{4}{5} =$$

Ex 109: Calculate and simplify:

$$\frac{3}{4} + \frac{5}{6} =$$

Ex 110: Calculate and simplify:

$$\frac{7}{8} + \frac{11}{6} = \boxed{}$$

I FRACTION AS QUOTIENT

I.1 CONVERTING DIVISION TO FRACTIONS

Ex 111: Write as a fraction:

$$3 \div 2 =$$

Ex 112: Write as a fraction:

$$2 \div 5 =$$

Ex 113: Write as a fraction:

$$3 \div 4 =$$

Ex 114: Write as a fraction:

$$5 \div 3 =$$

DIVISION CONVERTING FRACTIONS EXPRESSIONS

Ex 115: Convert the fraction into a division expression:

$$\frac{2}{5} = \boxed{} \div \boxed{}$$

Ex 116: Convert the fraction into a division expression:

$$\frac{4}{7} = \boxed{} \div \boxed{}$$

Ex 117: Convert the fraction into a division expression:

$$\frac{3}{8} = \boxed{} \div \boxed{}$$

Ex 118: Convert the fraction into a division expression:

$$\frac{6}{9} = \boxed{} \div \boxed{}$$

I.3 CONVERTING FRACTIONS TO WHOLE NUMBERS

Ex 119: Convert the fraction into a whole number:

$$\frac{4}{2} = \boxed{}$$

Ex 120: Convert the fraction into a whole number:

$$\frac{9}{3} = \boxed{}$$

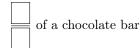
Ex 121: Convert the fraction into a whole number:

$$\frac{8}{4} =$$

Ex 122: Convert the fraction into a whole number:

$$\frac{5}{5} = \boxed{}$$

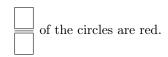
I.4 FINDING FRACTIONS IN WORD PROBLEMS


Ex 123: Four friends share 3 cakes equally. What fraction does each friend get?

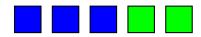
Ex 124: Five friends share 2 pizzas equally. What fraction does each friend get?

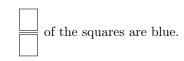
Ex 125: A couple shares 5 chocolate bars equally. What fraction of a chocolate bar does each person get?

Ex 126: Six family members share 2 apple pies equally. What What fraction of the children raised their hand? fraction of a pie does each family member get?


J FRACTION AS RATIO

IDENTIFYING FRACTIONS REAL-LIFE CONTEXTS


Ex 127:


What fraction of the circles are red?

Ex 128:

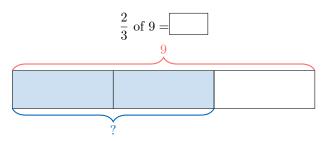
What fraction of the squares are blue?

Ex 129:

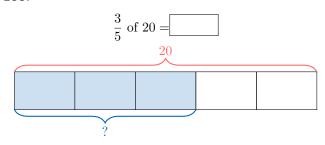
What fraction of the children are girls?

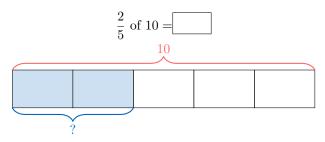
of the children are gir	ls
-------------------------	----

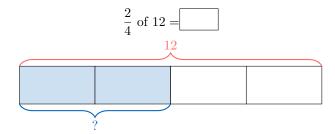

Ex 130:


	of the	children	raised	their	hand
--	--------	----------	--------	-------	------

J.2 CALCULATING FRACTIONS OF A WHOLE


Ex 131:


Ex 132:


Ex 133:

Ex 134:

Ex 135:

J.3 APPLYING FRACTIONS TO REAL-WORLD PROBLEMS

Ex 136: In a class of 9 students, $\frac{2}{3}$ of the students are girls. How many of the students are girls?

	girl
--	------

Ex 137: In a group of 16 fruits, $\frac{3}{4}$ of them are apples. How many of the fruits are apples?

	apples
--	--------

Ex 138: In a collection of 15 books, $\frac{2}{5}$ of them are novels. How many of the books are novels?

	novels
--	--------

Ex 139: For a refreshing drink recipe, the mixture consists of $\frac{1}{3}$ lemon and $\frac{2}{3}$ water for a total of 18 cl. How much lemon and water are used in the drink?

	cl of lemon
	cl of water

K FRACTION AS DECIMAL NUMBER

K.1 CONVERTING FRACTIONS TO DECIMALS

Ex 140: Convert to a decimal number:

$$\frac{3}{4} = \boxed{}$$

Ex 141: Convert to a decimal number:

$$\frac{2}{5} = \boxed{}$$

Ex 142: Convert to a decimal number:

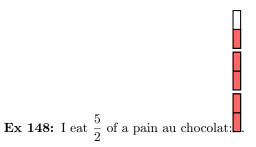
$$\frac{3}{20} =$$

Ex 143: Convert to a decimal number:

$$\frac{40}{50} =$$

K.2 CONVERTING DECIMALS TO FRACTIONS

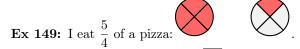
Ex 144: Convert to a fraction:


Ex 145: Convert 0.3 to a fraction:

Ex 146: Convert 10.7 to a fraction:

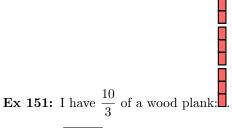
Ex 147: Convert 0.99 to a fraction:

L PROPER AND IMPROPER FRACTIONS


L.1 SOLVING REAL-WORLD PROBLEMS

Ex 148: I eat $\frac{3}{2}$ of a pain au chocolat: \blacksquare .

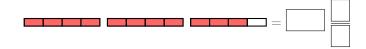
So I eat whole pains au chocolat and of another pain


au chocolat.

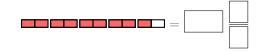
So I eat whole pizza and of another pizza.

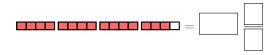
Ex 150: I have $\frac{8}{6}$ of a ribbon:

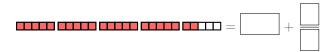
So I have whole ribbon and of another ribbon.


So I have whole wood planks and for another wood plank.

L.2 FINDING MIXED NUMBERS FROM BAR MODELS


Ex 152: Write the mixed number shown in the diagram:


Ex 153: Write the mixed number shown in the diagram:


Ex 154: Write the mixed number shown in the diagram:

Ex 155: Write the mixed number shown in the diagram:

Ex 156: Write the mixed number shown in the diagram:

L.3 FINDING FRACTIONS FROM MIXED NUMBERS

Ex 157: Convert into improper fraction:

$$2\frac{1}{3} = \boxed{}$$

Ex 158: Convert into an improper fraction:

$$3\frac{2}{5} = \boxed{\boxed{}}$$

Ex 159: Convert into an improper fraction:

$$2\frac{3}{4} = \boxed{\boxed{}}$$

Ex 160: Convert into an improper fraction:

$$4\frac{1}{2} = \boxed{\boxed{}}$$

L.4 FINDING MIXED NUMBERS FROM FRACTIONS

Ex 161: Convert into mixed number:

$$\frac{3}{2} = \boxed{}$$

Ex 162: Convert into a mixed number:

$$\frac{7}{3} = \boxed{}$$

Ex 163: Convert into a mixed number:

$$\frac{9}{2} = \boxed{}$$

Ex 164: Convert into a mixed number:

$$\frac{13}{5} = \boxed{}$$