A DEFINITIONS

A.1 WRITING FUNCTIONS: LEVEL 1

Ex 1: Consider the following calculation program:

- 1. Choose a number.
- 2. Subtract 5 from the chosen number.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) = \boxed{}$$

Ex 2: Consider the following calculation program:

- 1. Choose a number.
- 2. Multiply the chosen number by three.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) =$$

Ex 3: Consider the following calculation program:

- 1. Choose a number.
- 2. Multiply the chosen number by five.
- 3. Subtract 2 from the result obtained.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) =$$

Ex 4: Consider the following calculation program:

- 1. Choose a number.
- 2. Multiply the chosen number by -2.
- 3. Add 5 to the result obtained.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) =$$

A.2 WRITING FUNCTIONS: LEVEL 2

Ex 5: Consider the following calculation program:

- 1. Choose a number.
- 2. Multiply the chosen number by itself.
- 3. Subtract 1 from the result obtained.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) =$$

Ex 6: Consider the following calculation program:

- 1. Choose a number.
- 2. Square the chosen number.
- 3. Multiply the result by 2.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) = \boxed{}$$

Ex 7: Consider the following calculation program:

- 1. Choose a number.
- 2. Subtract 1 from the chosen number.
- 3. Multiply the result by the original number chosen.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) =$$

A.3 CALCULATING f(x)

Ex 8: For f(x) = x + 3,

$$f(4) = \boxed{}$$

Ex 9: For f(x) = 2x - 1,

$$f(5) =$$

Ex 10: For f(x) = 3x + 2,

$$f(2) = \square$$

Ex 11: For $f(x) = x^2 - 1$,

$$f(3) =$$

Ex 12: For f(x) = 5x - 3,

$$f(1) =$$

Ex 13: For $f(x) = \frac{x}{2} + 4$,

$$f(6) =$$

Ex 14: For f(x) = x - 5,

$$f(10) =$$

Ex 15: For f(x) = 2x - 5,

$$f(-2) =$$

Ex 16: For f(x) = -x + 4,

$$f(-3) =$$

Ex 17: For f(x) = 3x - 7,

$$f(-1) =$$

Ex 18: For
$$f(x) = x^2 - 2x$$
,

$$f(-2) =$$

Ex 19: For
$$f(x) = 2x + 3$$
,

$$f(-3) =$$

Ex 20: For
$$f(x) = \frac{x}{2} - 4$$
,

$$f(8) =$$

Ex 21: For
$$f(x) = \frac{3x-5}{2}$$
,

$$f(-1) =$$

Ex 22: For
$$f(x) = \frac{x-6}{2} - 3$$
,

$$f(10) =$$

A.4 CALCULATING f(x)

Ex 23: For
$$f: x \mapsto x + 3$$
,

$$f(4) =$$

Ex 24: For
$$f: x \mapsto x^2 - 1$$
,

$$f(2) =$$

Ex 25: For
$$f: x \mapsto (x-1)(x-2)$$
,

$$f(0) =$$

Ex 26: For $f: x \mapsto x^3$,

$$f(-1) =$$

A.5 SUBSTITUTING VALUES AND EXPRESSIONS INTO A FUNCTION

Ex 27: For $f: x \mapsto 1 - 3x$, find in simplest form:

1.
$$f(-2) =$$

2.
$$f(3) =$$

3.
$$f(x+1) =$$

4.
$$f(x^2) =$$

Ex 28: For $f: x \mapsto x^2$, find in simplest form:

1.
$$f(3) = \boxed{}$$

2.
$$f(-1) =$$

3.
$$f(-x) =$$

4.
$$f(x+1) =$$

5.
$$f(x+2) =$$

6.
$$f(2x) =$$

Ex 29: For $g: x \mapsto x^2 - 2x + 1$, find in simplest form:

1.
$$g(3) = \Box$$

2.
$$g(-1) = \boxed{}$$

4.
$$g(x+1) = \boxed{}$$

5.
$$g(x+2) = \boxed{}$$

6.
$$g(2x) =$$

B TABLES OF VALUES

B.1 FILLING TABLES OF VALUES

Ex 30: For $f(x) = x^2$, fill in the table of values:

x	-2	-1	0	1	2
f(x)					

Ex 31: For f(x) = -2x + 1, fill in the table:

x	-2	-1	0	1	2
f(x)					

Ex 32: For $f(x) = x^2 - 3x + 1$, fill in the table:

x	-2	-1	0	1	2
f(x)					

C GRAPHS

C.1 PLOTTING LINE GRAPHS

Ex 33: Here is a table of values for the function f(x) = x - 1:

x	-2	-1	0	1	2	3
f(x)	-3	-2	-1	0	1	2

Plot the line graph of f.

Ex 34: Here is a table of values for the function $f(x) = x^2$:

x	-2	-1	-0.5	0	0.5	1	2
f(x)	4	1	0.25	0	0.25	1	4

Plot the line graph of f.

Ex 35: Here is a table of values for the function f(x) = -2x + 1:

x	-2	-1	0	1	2
f(x)	5	3	1	-1	-3

Plot the line graph of f.

Ex 36: Here is a table of values for the function f(x) = 0.5x - 1:

x	-3	-2	-1	0	1	2	3
f(x)	-2.5	-2	-1.5	-1	-0.5	0	0.5

Plot the line graph of f.

D READING VALUES AND SOLVING f(x) = y ON A GRAPH

D.1 FINDING f(x)

Ex 37: The graph of y = f(x) is:

$$f(2) =$$

Ex 38: The graph of y = f(x) is:

Ex 39: The graph of y = f(x) is:

$$f(-2) =$$

Ex 40: The graph of y = f(x) is:

 $f(1) = \square$

Ex 41: The graph of y = f(x) is:

Ex 42: The graph of y = f(x) is:

Find x such that f(x) = -2.

$$x =$$

Ex 43: The graph of y = f(x) is:

Find x such that f(x) = 2.

$$x = \boxed{}$$

Ex 44: The graph of y = f(x) is:

Find all x such that f(x) = 3. Give your answers in increasing order:

$$x = \boxed{\quad \text{or } x = \boxed{\quad}}$$

Ex 45: The graph of y = f(x) is:

Find x such that f(x) = 1.

E SOLVING f(x) = y ALGEBRAICALLY

E.1 SOLVING LINEAR EQUATIONS FOR f(x) = y

Ex 46: Let f(x) = 3x + 12. Find all x such that f(x) = 0.

Justify your answer.

Ex 47: Let f(x) = 2x - 18. Find all x such that f(x) = 0. Justify your answer.

Ex 48: Let f(x) = 2x + 20. Find all x such that f(x) = 10.

Justify your answer.

Ex 49: Let f(x) = -6x + 7. Find all x such that f(x) = 2.

Justify your answer.

E.2 ANALYZING LINEAR MODELS IN CONTEXT

The value of a laptop t years after purchase is given by V(t) = 1800 - 300t dollars.

1. Find V(3)

State what this value means

- \square The original purchase price is \$900.
- \square The laptop depreciates by \$900 per year.
- \square The value of the laptop after 3 years is \$900.
- 2. Find t when V(t) = 600.

Explain what this represents.

- \square After 4 years, the laptop is worth \$600.
- \square The depreciation rate is \$4 per year.
- \square The original price was \$600 after 4 years.
- 3. Find the original purchase price of the laptop.

Ex 51: The height of a plant t weeks after planting is given by H(t) = 5 + 2t cm.

1. Find H(4)

State what this value means

- \square The initial height is 13 cm.
- \square The plant grows by 13 cm per week.
- \square The height of the plant after 4 weeks is 13 cm.
- 2. Find t when H(t) = 15.

Explain what this represents. \square After 5 weeks, the plant is 15 cm tall. \square The growth rate is 5 cm per week. \square The initial height was 15 cm after 5 weeks. 3. Find the initial height of the plant. The temperature of water t minutes after starting to heat it is given by $T(t) = 25 + 15t^{\circ}$ degrees Celsius. 1. Find T(3)State what this value means \square The temperature of the water after 3 minutes is 70°C. \square The initial temperature is 70°C. \square The water heats up by 70 degrees per minute. 2. Find t when T(t) = 100. Explain what this represents. \square The water is at 100°C after 100 minutes. \square The heating rate is 5 degrees per minute. ☐ After 5 minutes, the water reaches boiling point at 100°C. 3. Find the initial temperature of the water. F DOMAIN F.1 FINDING DOMAINS: LEVEL 1 **MCQ 53:** Find the domain of the function $f: x \mapsto x^2$. $\square \{x \in \mathbb{R} \mid x \neq 0\}$ \square $[0,+\infty)$ \Box $(-\infty,0)$ MCQ 54: Find the domain of the function $f: x \mapsto \frac{1}{x}$ \square \mathbb{R} $\square \{x \in \mathbb{R} \mid x \neq 0\}$ \square $[0,+\infty)$ \square $(-\infty,0)$ **MCQ 55:** Find the domain of the function $f: x \mapsto \sqrt{x}$. $\square \{x \in \mathbb{R} \mid x \neq 0\}$ \square $[0,+\infty)$

F.2 FINDING DOMAINS: LEVEL 2

MCQ 56: Find the domain of the function $f: x \mapsto \sqrt{2x-4}$.

 \square \mathbb{R}

 $\square \ \{x \in \mathbb{R} \mid x \neq 4\}$

 \square $[2,+\infty)$

 \Box $(-\infty,4]$

MCQ 57: Find the domain of the function $f: x \mapsto \frac{x}{x-3}$.

 $\square \{x \in \mathbb{R} \mid x \neq 3 \text{ and } x \neq 0\}$

 \square $[3,+\infty)$

 \Box $(-\infty,3)$

 $\square \{x \in \mathbb{R} \mid x \neq 3\}$

MCQ 58: Find the domain of the function $f: x \mapsto \frac{1}{x^2 - 9}$.

 \square \mathbb{R}

 \Box (-3,3)

 $\square [0,+\infty)$

 $\square \{x \in \mathbb{R} \mid x \neq -3 \text{ and } x \neq 3\}$

 $\square x > 3$

MCQ 59: Find the domain of the function $f: x \mapsto \sqrt{6-2x}$.

 \square \mathbb{R}

 \square $(-\infty,3]$

 \square $[3,+\infty)$

 \square $(-\infty,6]$

G ALGEBRA OF FUNCTIONS

G.1 ADDING, SUBTRACTING, AND MULTIPLYING FUNCTIONS

Ex 60: For f(x) = 2x + 2 and g(x) = 3 - x, find in simplest form:

1. f(3) + g(3) =

2. f(-1) + g(-1) =

 $3. \ f(x) + g(x) =$

 $4. \ g(x) + f(x) =$

Ex 61: For $f(x) = x^2 - 2$ and g(x) = x - 2, find in simplest form:

1. f(0) + g(0) =

 \Box $(-\infty,0)$

2.
$$f(-2) + g(-2) = \boxed{}$$

3.
$$f(x) + g(x) =$$

4.
$$f(x) - g(x) =$$

Ex 62: Let f(x) = 3x - 2 and $g(x) = x^2$. Find in factorized form:

$$f(x) \times g(x) =$$

Ex 63: Let f(x) = 2x + 5 and g(x) = x - 4. Find in factorized form:

$$f(x) \times g(x) =$$

G.2 DECOMPOSING EXPRESSIONS INTO FUNCTIONS

Ex 64: Find two functions f and g such that $f(x) \times g(x) = (x+3)^2(x-2)$.

•
$$f(x) =$$

•
$$g(x) = \boxed{}$$

Ex 65: Find two functions f and g such that $f(x) \times g(x) = (x^2 + 4)(3x - 7)$.

$$\bullet$$
 $f(x) =$

•
$$g(x) =$$

Ex 66: Find two functions f and g such that $f(x) + g(x) = (x-2)^2 + \sqrt{x}$.

$$\bullet$$
 $f(x) =$

•
$$g(x) = \boxed{}$$

Ex 67: Find two functions f and g such that $f(x) + g(x) = \frac{1}{x} + (x+1)^2$.

•
$$f(x) =$$

$$\bullet$$
 $g(x) =$

H COMPOSITION

H.1 EVALUATING COMPOSITE FUNCTIONS

Ex 68: For f(x) = 2x + 2 and g(x) = 3 - x, find in simplest form:

1.
$$f(g(3)) = \Box$$

2.
$$f(g(-1)) = \boxed{}$$

$$3. \ f(g(x)) = \boxed{}$$

4.
$$g(f(x)) =$$

Ex 69: For $f(x) = x^2 + 2x$ and g(x) = 2 - x, find in simplest form:

1.
$$f(g(3)) =$$

2.
$$f(g(-1)) =$$

$$3. \ f(g(x)) = \boxed{}$$

4.
$$g(f(x)) =$$

Ex 70: For f(x) = 3x - 5, find in simplest form:

1.
$$f(f(-1)) =$$

2.
$$f(f(x)) =$$

H.2 DECOMPOSING FUNCTIONS INTO COMPOSITIONS

Ex 71: Find two functions f and g such that $f(g(x)) = \sqrt{2x-1}$ and $g(x) \neq x$.

•
$$f(x) =$$

•
$$g(x) =$$

Ex 72: Find two functions f and g such that $f(g(x)) = (x+2)^5$ and $g(x) \neq x$.

•
$$f(x) =$$

•
$$g(x) =$$

Ex 73: Find two functions f and g such that $f(g(x)) = \frac{1}{x^2 + 1}$ and $g(x) \neq x$.

•
$$f(x) =$$

•
$$g(x) =$$

Ex 74: Find two functions f and g such that $f(g(x)) = (x^3 - \mathbf{Ex 79})$: Draw the graph of the inverse function of the blue graph: $(2)^{-4}$ and $g(x) \neq x$.

- f(x) =
- g(x) =

I INVERSE FUNCTION

I.1 FINDING AND CHECKING INVERSES

Ex 75:

1. Find the inverse of f(x) = x + 3.

$$f^{-1}(x) = \boxed{}$$

2. Evaluate

$$f^{-1}(f(x)) =$$
 $f(f^{-1}(x)) =$

Ex 76:

1. Find the inverse of f(x) = 4x - 8.

$$f^{-1}(x) = \boxed{}$$

2. Evaluate

$$f^{-1}(f(x)) =$$
 $f(f^{-1}(x)) =$

Ex 77:

1. Find the inverse of $f(x) = \frac{x}{2} - 3$.

$$f^{-1}(x) = \boxed{}$$

2. Evaluate

$$f^{-1}(f(x)) =$$
 $f(f^{-1}(x)) =$

THE INVERSE FUNCTION BY 1.2 **GRAPHING** REFLECTION

Ex 78: Draw the graph of the inverse function of the blue graph:

Ex 80: Draw the graph of the inverse function of the blue graph:

