
FUNCTIONS

A DEFINITIONS

A.1 WRITING FUNCTIONS: LEVEL 1

Ex 1: Consider the following calculation program:

1. Choose a number.

2. Subtract 5 from the chosen number.

Let x be the number chosen initially. Determine the function f
that corresponds to the result obtained with this program.

f(x) = x− 5

Answer: Given the following program:

1. Choose a number: x.

2. Subtract 5 from the chosen number: x− 5.

Thus, the function is:

f(x) = x− 5

Ex 2: Consider the following calculation program:

1. Choose a number.

2. Multiply the chosen number by three.

Let x be the number chosen initially. Determine the function f
that corresponds to the result obtained with this program.

f(x) = 3x

Answer: Given the following program:

1. Choose a number: x.

2. Multiply the chosen number by three: 3x.

Thus, the function is:
f(x) = 3x

Ex 3: Consider the following calculation program:

1. Choose a number.

2. Multiply the chosen number by five.

3. Subtract 2 from the result obtained.

Let x be the number chosen initially. Determine the function f
that corresponds to the result obtained with this program.

f(x) = 5x− 2

Answer: Given the following program:

1. Choose a number: x.

2. Multiply the chosen number by five: 5x.

3. Subtract 2 from the result obtained: 5x− 2.

Thus, the function is:

f(x) = 5x− 2

Ex 4: Consider the following calculation program:

1. Choose a number.

2. Multiply the chosen number by −2.

3. Add 5 to the result obtained.

Let x be the number chosen initially. Determine the function f
that corresponds to the result obtained with this program.

f(x) = −2x+ 5

Answer: Given the following program:

1. Choose a number: x.

2. Multiply the chosen number by −2: −2x.

3. Add 5 to the result obtained: −2x+ 5.

Thus, the function is:

f(x) = −2x+ 5

A.2 WRITING FUNCTIONS: LEVEL 2

Ex 5: Consider the following calculation program:

1. Choose a number.

2. Multiply the chosen number by itself.

3. Subtract 1 from the result obtained.

Let x be the number chosen initially. Determine the function f
that corresponds to the result obtained with this program.

f(x) = x2 − 1

Answer: Given the following program:

1. Choose a number: x.

2. Multiply the chosen number by itself: x2.

3. Subtract 1 from the result obtained: x2 − 1.

Thus, the function is:

f(x) = x2 − 1

Ex 6: Consider the following calculation program:

1. Choose a number.

2. Square the chosen number.

3. Multiply the result by 2.

Let x be the number chosen initially. Determine the function f
that corresponds to the result obtained with this program.

f(x) = 2x2

Answer: Given the following program:

1. Choose a number: x.

2. Square the chosen number: x2.

3. Multiply the result by 2: 2x2.
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Thus, the function is:
f(x) = 2x2

Ex 7: Consider the following calculation program:

1. Choose a number.

2. Subtract 1 from the chosen number.

3. Multiply the result by the original number chosen.

Let x be the number chosen initially. Determine the function f
that corresponds to the result obtained with this program.

f(x) = (x− 1)x

Answer: Given the following program:

1. Choose a number: x.

2. Subtract 1 from the chosen number: x− 1.

3. Multiply the result by the original number: (x− 1)x.

Thus, the function is:

f(x) = (x− 1)x

A.3 CALCULATING f(x)

Ex 8: For f(x) = x+ 3,

f(4) = 7

Answer:

f(4) = (4) + 3 (substituting x with (4))

= 4 + 3

= 7

Ex 9: For f(x) = 2x− 1,

f(5) = 9

Answer:

f(5) = 2× (5)− 1 (substituting x with (5))

= 10− 1

= 9

Ex 10: For f(x) = 3x+ 2,

f(2) = 8

Answer:

f(2) = 3× (2) + 2 (substituting x with (2))

= 6 + 2

= 8

Ex 11: For f(x) = x2 − 1,

f(3) = 8

Answer:

f(3) = (3)2 − 1 (substituting x with (3))

= 9− 1

= 8

Ex 12: For f(x) = 5x− 3,

f(1) = 2

Answer:

f(1) = 5× (1)− 3 (substituting x with (1))

= 5− 3

= 2

Ex 13: For f(x) = x
2 + 4,

f(6) = 7

Answer:

f(6) =
(6)

2
+ 4 (substituting x with (6))

= 3 + 4

= 7

Ex 14: For f(x) = x− 5,

f(10) = 5

Answer:

f(10) = (10)− 5 (substituting x with (10))

= 10− 5

= 5

Ex 15: For f(x) = 2x− 5,

f(−2) = −9

Answer:

f(−2) = 2× (−2)− 5 (substituting x with (−2))
= −4− 5

= −9

Ex 16: For f(x) = −x+ 4,

f(−3) = 7

Answer:

f(−3) = −(−3) + 4 (substituting x with (−3))
= 3 + 4

= 7

Ex 17: For f(x) = 3x− 7,

f(−1) = −10
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Answer:

f(−1) = 3× (−1)− 7 (substituting x with (−1))
= −3− 7

= −10

Ex 18: For f(x) = x2 − 2x,

f(−2) = 8

Answer:

f(−2) = (−2)2 − 2× (−2) (substituting x with (−2))
= 4 + 4

= 8

Ex 19: For f(x) = 2x+ 3,

f(−3) = −3

Answer:

f(−3) = 2× (−3) + 3 (substituting x with (−3))
= −6 + 3

= −3

Ex 20: For f(x) = x
2 − 4,

f(8) = 0

Answer:

f(8) =
(8)

2
− 4 (substituting x with (8))

= 4− 4

= 0

Ex 21: For f(x) = 3x−5
2 ,

f(−1) = −4

Answer:

f(−1) = 3× (−1)− 5

2
(substituting x with (−1))

=
−3− 5

2

=
−8
2

= −4

Ex 22: For f(x) = x−6
2 − 3,

f(10) = −1

Answer:

f(10) =
(10)− 6

2
− 3 (substituting x with (10))

=
4

2
− 3

= 2− 3

= −1

A.4 CALCULATING f(x)

Ex 23: For f : x 7→ x+ 3,

f(4) = 7

Answer:

f(4) = (4) + 3 (substituting x with (4))

= 4 + 3

= 7

Ex 24: For f : x 7→ x2 − 1,

f(2) = 3

Answer:

f(2) = (2)2 − 1 (substituting x with (2))

= 4− 1

= 3

Ex 25: For f : x 7→ (x− 1)(x− 2),

f(0) = 2

Answer:

f(0) = (0− 1)(0− 2) (substituting x with (0))

= (−1)× (−2)
= 2

Ex 26: For f : x 7→ x3,

f(−1) = −1

Answer:

f(−1) = (−1)3 (substituting x with (−1))
= −1

A.5 SUBSTITUTING VALUES AND EXPRESSIONS
INTO A FUNCTION

Ex 27: For f : x 7→ 1− 3x, find in simplest form:

1. f(−2) = 7

2. f(3) = −8

3. f(x+ 1) = −3x− 2

4. f(x2) = 1− 3x2

Answer:

1. f(−2) = 1− 3× (−2) (substituting x with − 2)

= 1 + 6

= 7

2. f(3) = 1− 3× 3 (substituting x with 3)

= 1− 9

= −8
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3. f(x+ 1) = 1− 3(x+ 1) (substituting x with (x+ 1))

= 1− 3x− 3 (expand)
= −3x− 2

4. f(x2) = 1− 3(x2) (substituting x with (x2))

= 1− 3x2

Ex 28: For f : x 7→ x2, find in simplest form:

1. f(3) = 9

2. f(−1) = 1

3. f(−x) = x2

4. f(x+ 1) = x2 + 2x+ 1

5. f(x+ 2) = x2 + 4x+ 4

6. f(2x) = 4x2

Answer:

1. f(3) = 32 = 9

2. f(−1) = (−1)2 = 1

3. f(−x) = (−x)2 (substituting x with (−x))
= (−1)2x2

= x2

4. f(x+ 1) = (x+ 1)2 (substituting x with (x+ 1))

= x2 + 2x+ 1 (binomial expansion)

5. f(x+ 2) = (x+ 2)2 (substituting x with (x+ 2))

= x2 + 4x+ 4 (binomial expansion)

6. f(2x) = (2x)2 (substituting x with (2x))

= 4x2

Ex 29: For g : x 7→ x2 − 2x+ 1, find in simplest form:

1. g(3) = 4

2. g(−1) = 4

3. g(−x) = x2 + 2x+ 1

4. g(x+ 1) = x2

5. g(x+ 2) = x2 + 2x+ 1

6. g(2x) = 4x2 − 4x+ 1

Answer:

1. g(3) = (3)2 − 2× (3) + 1 (substituting x with 3)

= 9− 6 + 1 (evaluate)

= 4

2. g(−1) = (−1)2 − 2× (−1) + 1 (substituting x with −1)

= 1 + 2 + 1 (evaluate)

= 4

3. g(−x) = (−x)2 − 2× (−x) + 1 (substituting x with (−x))

= x2 + 2x+ 1 (expand)

4. g(x+ 1) = (x+ 1)2 − 2(x+ 1) + 1 (substituting x with (x+1))

= (x2 + 2x+ 1)− (2x+ 2) + 1 (expand)

= x2 + 2x+ 1− 2x− 2 + 1 (combine)

= x2

5. g(x+ 2) = (x+ 2)2 − 2(x+ 2) + 1 (substituting x with (x+2))

= (x2 + 4x+ 4)− (2x+ 4) + 1 (expand)

= x2 + 4x+ 4− 2x− 4 + 1 (combine)

= x2 + 2x+ 1

6. g(2x) = (2x)2 − 2× (2x) + 1 (substituting x with (2x))

= 4x2 − 4x+ 1 (expand)

B TABLES OF VALUES

B.1 FILLING TABLES OF VALUES

Ex 30: For f(x) = x2, fill in the table of values:

x −2 −1 0 1 2

f(x) 4 1 0 1 4

Answer:

• f(−2) = ((−2))2 (substituting x with (−2))
= 4

• f(−1) = ((−1))2 (substituting x with (−1))
= 1

• f(0) = (0)2 (substituting x with (0))

= 0

• f(1) = (1)2 (substituting x with (1))

= 1

• f(2) = (2)2 (substituting x with (2))

= 4

So the table of values is:

x −2 −1 0 1 2
f(x) 4 1 0 1 4

Ex 31: For f(x) = −2x+ 1, fill in the table:

x −2 −1 0 1 2

f(x) 5 3 1 −1 −3

Answer:

• f(−2) = −2× (−2) + 1 (substituting x with (−2))
= 4 + 1

= 5

• f(−1) = −2× (−1) + 1 (substituting x with (−1))
= 2 + 1

= 3
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• f(0) = −2× (0) + 1 (substituting x with (0))

= 0 + 1

= 1

• f(1) = −2× (1) + 1 (substituting x with (1))

= −2 + 1

= −1

• f(2) = −2× (2) + 1 (substituting x with (2))

= −4 + 1

= −3

So the table of values is:

x −2 −1 0 1 2
f(x) 5 3 1 −1 −3

Ex 32: For f(x) = x2 − 3x+ 1, fill in the table:

x −2 −1 0 1 2

f(x) 11 5 1 −1 −1

Answer:

• f(−2) = ((−2))2 − 3× (−2) + 1 (substituting x with (−2))
= 4 + 6 + 1

= 11

• f(−1) = ((−1))2 − 3× (−1) + 1 (substituting x with (−1))
= 1 + 3 + 1

= 5

• f(0) = (0)2 − 3× (0) + 1 (substituting x with (0))

= 0 + 0 + 1

= 1

• f(1) = (1)2 − 3× (1) + 1 (substituting x with (1))

= 1− 3 + 1

= −1

• f(2) = (2)2 − 3× (2) + 1 (substituting x with (2))

= 4− 6 + 1

= −1

So the table of values is:

x −2 −1 0 1 2
f(x) 11 5 1 −1 −1

C GRAPHS

C.1 PLOTTING LINE GRAPHS

Ex 33: Here is a table of values for the function f(x) = x− 1:

x −2 −1 0 1 2 3
f(x) −3 −2 −1 0 1 2

Plot the line graph of f .

x
−1−2−3 1 2 3

y

−1

−2

−3

1

2

3

0

Answer: Plot the points (−2,−3), (−1,−2), (0,−1), (1, 0), (2, 1),
and (3, 2). Then, connect the points with straight segments to
form the line graph.

x
−1−2−3 1 2 3

y

−1

−2

−3

1

2

3

0

Ex 34: Here is a table of values for the function f(x) = x2:

x −2 −1 −0.5 0 0.5 1 2
f(x) 4 1 0.25 0 0.25 1 4

Plot the line graph of f .

x
−1−2−3 1 2 3

y

1

2

3

4

0

Answer: Plot the points (−2, 4), (−1, 1), (−0.5, 0.25), (0, 0),
(0.5, 0.25), (1, 1), and (2, 4). Then, connect the points with
straight segments.
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x
−1−2−3 1 2 3

y

1

2

3

4

0

Ex 35: Here is a table of values for the function f(x) = −2x+1:

x −2 −1 0 1 2
f(x) 5 3 1 −1 −3

Plot the line graph of f .

x
−1−2−3 1 2 3

y

−1

−2

−3

−4

1

2

3

4

5

6

0

Answer: Plot the points (−2, 5), (−1, 3), (0, 1), (1,−1), (2,−3).
Then, connect the points with straight segments to form the line
graph.

x
−1−2−3 1 2 3

y

−1

−2

−3

−4

1

2

3

4

5

6

0

Ex 36: Here is a table of values for the function f(x) = 0.5x−1:

x −3 −2 −1 0 1 2 3
f(x) −2.5 −2 −1.5 −1 −0.5 0 0.5

Plot the line graph of f .

x
−1−2−3 1 2 3

y

−1

−2

−3

1

2

0

Answer: Plot the points (−3,−2.5), (−2,−2), (−1,−1.5), (0,−1),
(1,−0.5), (2, 0), (3, 0.5). Then, connect the points with straight
segments to form the line graph.
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x
−1−2−3 1 2 3

y

−1

−2

−3

1

2

0

D READING VALUES AND SOLVING f(x) = y
ON A GRAPH

D.1 FINDING f(x)

Ex 37: The graph of y = f(x) is:

x

y

0−2 −1 1 2

−1

1

2

3

f(2) = 3

Answer:

x

y

0−2 −1 1 2

−1

1

2

3
(2, 3)

f(2) = 3

Ex 38: The graph of y = f(x) is:

x

y

0−1 1 2

−2

−1

1

2

f(1) = −1

Answer:

x

y

0−1 1 2

−2

−1

1

2

(1,−1)

f(1) = −1

Ex 39: The graph of y = f(x) is:

x

y

0−2 −1 1 2

−3

−2

−1

1

2

f(−2) = 1

Answer:
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x

y

0−2 −1 1 2

−3

−2

−1

1

2

(−2, 1)

f(−2) = 1

Ex 40: The graph of y = f(x) is:

x

y

0−2 −1 1 2

−1

1

2

3

f(1) = 0

Answer:

x

y

0−2 −1 1 2

−1

1

2

3

(1, 0)

f(1) = 0

Ex 41: The graph of y = f(x) is:

x

y

0−2 −1 1 2

−3

−2

−1

1

2

f(1) = −2

Answer:

x

y

0−2 −1 1 2

−3

−2

−1

1

2

(1,−2)

f(1) = −2

D.2 FINDING x SUCH THAT f(x) = y

Ex 42: The graph of y = f(x) is:

x

y

0−2 −1 1 2

−3

−2

−1

1

2

Find x such that f(x) = −2.

x = 1

Answer:

• Draw a horizontal line at y = −2.
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x

y

0−2 −1 1 2

−3

−2

−1

1

2

• Identify the intersection point with the curve.

x

y

0−2 −1 1 2

−3

−2

−1

1

2

(1,−2)

x = 1

Ex 43: The graph of y = f(x) is:

x

y

0−1 1 2

−2

−1

1

2

Find x such that f(x) = 2.

x = −1

Answer:

• Draw a horizontal line at y = 2.

x

y

0−1 1 2

−2

−1

1

2

• Identify the intersection point with the curve.

x

y

0−1 1 2

−2

−1

1

2
(−1, 2)

x = −1

Ex 44: The graph of y = f(x) is:

x

y

0−2 −1 1 2

−1

1

2

3

Find all x such that f(x) = 3.
Give your answers in increasing order:

x = −2 or x = 2

Answer:

• Draw a horizontal line at y = 3.

www.commeunjeu.com 9

www.commeunjeu.com


x

y

0−2 −1 1 2

−1

1

2

3

• Identify the intersection points with the curve.

x

y

0−2 −1 1 2

−1

1

2

3
(−2, 3) (2, 3)

x = −2 or x = 2

Ex 45: The graph of y = f(x) is:

x

y

0−2 −1 1 2

−3

−2

−1

1

2

Find x such that f(x) = 1.

x = −2

Answer:

• Draw a horizontal line at y = 1.

x

y

0−2 −1 1 2

−3

−2

−1

1

2

• Identify the intersection point with the curve.

x

y

0−2 −1 1 2

−3

−2

−1

1

2

(−2, 1)

x = −2

E SOLVING f(x) = y ALGEBRAICALLY

E.1 SOLVING LINEAR EQUATIONS FOR f(x) = y

Ex 46: Let f(x) = 3x + 12. Find all x such that f(x) = 0.
Justify your answer.

Answer: We solve the equation:

f(x) = 0

3x+ 12 = 0

3x = −12 (subtract 12 from both sides)
x = −4 (divide both sides by 3)

So the solution is x = −4.
(Optional) We can check this by calculating f(−4):

f(−4) = 3× (−4) + 12

= −12 + 12

= 0

Ex 47: Let f(x) = 2x − 18. Find all x such that f(x) = 0.
Justify your answer.
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Answer: We solve the equation:

f(x) = 0

2x− 18 = 0

2x− 18 + 18 = 0 + 18 (add 18 to both sides)
2x = 18

2x

2
=

18

2
(divide both sides by 2)

x = 9

So the solution is x = 9.(Optional) We can check this by
calculating f(9):

f(9) = 2× 9− 18

= 18− 18

= 0

Ex 48: Let f(x) = 2x + 20. Find all x such that f(x) = 10.
Justify your answer.

Answer: We solve the equation:

f(x) = 10

2x+ 20 = 10

2x+ 20− 20 = 10− 20 (subtract 20 from both sides)
2x = −10
2x

2
=
−10
2

(divide both sides by 2)

x = −5

So the solution is x = −5.(Optional) We can check this by
calculating f(−5):

f(−5) = 2× (−5) + 20

= −10 + 20

= 10

Ex 49: Let f(x) = −6x + 7. Find all x such that f(x) = 2.
Justify your answer.

Answer: We solve the equation:

f(x) = 2

−6x+ 7 = 2

−6x+ 7− 7 = 2− 7 (subtract 7 from both sides)
−6x = −5
−6x
−6

=
−5
−6

(divide both sides by −6)

x =
5

6

So the solution is x =
5

6
.(Optional) We can check this by

calculating f
(
5
6

)
:

f

(
5

6

)
= −6× 5

6
+ 7

= −5 + 7

= 2

E.2 ANALYZING LINEAR MODELS IN CONTEXT

Ex 50: The value of a laptop t years after purchase is given
by V (t) = 1800− 300t dollars.

1. Find V (3)

900

State what this value means
The value of the laptop after 3 years is $900.

2. Find t when V (t) = 600.

4

Explain what this represents.
After 4 years, the laptop is worth $600.

3. Find the original purchase price of the laptop.

1800

Answer:

1. V (3) = 1800− 300× 3 = 1800− 900 = 900.
This means the value of the laptop after 3 years is $900.

2. Solve 1800− 300t = 600:

1800− 300t = 600

1800− 600 = 300t

1200 = 300t

t = 4.

This represents that after 4 years, the laptop is worth $600.

3. The original purchase price is V (0) = 1800−300×0 = 1800
dollars.

Ex 51: The height of a plant t weeks after planting is given
by H(t) = 5 + 2t cm.

1. Find H(4)

13

State what this value means
The height of the plant after 4 weeks is 13 cm.

2. Find t when H(t) = 15.

5

Explain what this represents.
After 5 weeks, the plant is 15 cm tall.

3. Find the initial height of the plant.

5

Answer:
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1. H(4) = 5 + 2× 4 = 5 + 8 = 13.
This means the height of the plant after 4 weeks is 13 cm.

2. Solve 5 + 2t = 15:
5 + 2t = 15

2t = 10

t = 5.

This represents that after 5 weeks, the plant is 15 cm tall.

3. The initial height is H(0) = 5 + 2× 0 = 5 cm.

Ex 52: The temperature of water t minutes after starting
to heat it is given by T (t) = 25 + 15t◦ degrees Celsius.

1. Find T (3)

70

State what this value means
The temperature of the water after 3 minutes is 70◦C.

2. Find t when T (t) = 100.

5

Explain what this represents.
After 5 minutes, the water reaches boiling point at 100◦C.

3. Find the initial temperature of the water.

25

Answer:

1. T (3) = 25 + 15× 3 = 25 + 45 = 70.
This means the temperature of the water after 3 minutes is
70◦C.

2. Solve 25 + 15t = 100:

25 + 15t = 100

15t = 75

t = 5.

This represents that after 5 minutes, the water reaches
boiling point at 100◦C.

3. The initial temperature is T (0) = 25 + 15× 0 = 25◦C.

F DOMAIN

F.1 FINDING DOMAINS: LEVEL 1

MCQ 53: Find the domain of the function f : x 7→ x2.

� R

� {x ∈ R | x 6= 0}

� [0,+∞)

� (−∞, 0)

Answer: The function f(x) = x2 is defined for all real numbers
because squaring any real number yields a real result. Therefore,
the domain is all real numbers, which is R.

MCQ 54: Find the domain of the function f : x 7→ 1

x
.

� R

� {x ∈ R | x 6= 0}

� [0,+∞)

� (−∞, 0)

Answer: The function f(x) = 1
x is undefined at x = 0 because

division by zero is not allowed. Therefore, the domain is all real
numbers except 0, which is {x ∈ R | x 6= 0}.

MCQ 55: Find the domain of the function f : x 7→
√
x.

� R

� {x ∈ R | x 6= 0}

� [0,+∞)

� (−∞, 0)

Answer: The function f(x) =
√
x is undefined for negative real

numbers because the square root of a negative number is not
real. Therefore, the domain is all non-negative real numbers,
which is [0,+∞).

F.2 FINDING DOMAINS: LEVEL 2

MCQ 56: Find the domain of the function f : x 7→
√
2x− 4.

� R

� {x ∈ R | x 6= 4}

� [2,+∞)

� (−∞, 4]

Answer: The function f(x) =
√
2x− 4 is undefined when the

expression inside the square root is negative, i.e., when 2x−4 < 0.
Solving this inequality:

2x− 4 < 0

2x < 4 (adding 4 to both sides)
x < 2 (dividing both sides by 2)

Therefore, the function is defined for x ≥ 2, so the domain is
[2,+∞).

MCQ 57: Find the domain of the function f : x 7→ x

x− 3
.

� R

� {x ∈ R | x 6= 3 and x 6= 0}

� [3,+∞)

� (−∞, 3)

� {x ∈ R | x 6= 3}
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Answer: The function f(x) =
x

x− 3
is undefined when the

denominator is zero, i.e., when x− 3 = 0. Solving this equation:

x− 3 = 0

x = 3

Therefore, the function is defined for all real numbers except
x = 3, so the domain is {x ∈ R | x 6= 3}.

MCQ 58: Find the domain of the function f : x 7→ 1

x2 − 9
.

� R

� (−3, 3)

� [0,+∞)

� {x ∈ R | x 6= −3 and x 6= 3}

� x > 3

Answer: The function f(x) =
1

x2 − 9
is undefined when the

denominator is zero, i.e., when x2−9 = 0. Solving this equation:

x2 − 9 = 0

x2 = 9

x = 3 or x = −3

Therefore, the function is defined for all real numbers except
x = 3 and x = −3, so the domain is {x ∈ R | x 6= 3 and x 6= −3}.

MCQ 59: Find the domain of the function f : x 7→
√
6− 2x.

� R

� (−∞, 3]

� [3,+∞)

� (−∞, 6]

Answer: The function f(x) =
√
6− 2x is undefined when the

expression inside the square root is negative, i.e., when 6−2x < 0.
Solving this inequality:

6− 2x < 0

−2x < −6 (subtract 6 from both sides)
x > 3 (divide both sides by -2, reverse the sign)

Therefore, the function is defined for x ≤ 3, so the domain is
(−∞, 3].

G ALGEBRA OF FUNCTIONS

G.1 ADDING, SUBTRACTING, AND MULTIPLYING
FUNCTIONS

Ex 60: For f(x) = 2x + 2 and g(x) = 3 − x, find in simplest
form:

1. f(3) + g(3) = 8

2. f(−1) + g(−1) = 4

3. f(x) + g(x) = x+ 5

4. g(x) + f(x) = x+ 5

Answer:

1. f(3) + g(3) = (2× 3 + 2) + (3− 3)

= (6 + 2) + 0

= 8 + 0

= 8

2. f(−1) + g(−1) = (2× (−1) + 2) + (3− (−1))
= (−2 + 2) + (3 + 1)

= 0 + 4

= 4

3. f(x) + g(x) = (2x+ 2) + (3− x)

= 2x+ 2 + 3− x

= x+ 5

4. g(x) + f(x) = (3− x) + (2x+ 2)

= 3− x+ 2x+ 2

= x+ 5

Ex 61: For f(x) = x2 − 2 and g(x) = x − 2, find in simplest
form:

1. f(0) + g(0) = −4

2. f(−2) + g(−2) = −2

3. f(x) + g(x) = x2 + x− 4

4. f(x)− g(x) = x2 − x

Answer:

1. f(0) + g(0) = (02 − 2) + (0− 2)

= (−2) + (−2)
= −4

2. f(−2) + g(−2) = ((−2)2 − 2) + (−2− 2)

= (4− 2) + (−4)
= 2− 4

= −2

3. f(x) + g(x) = (x2 − 2) + (x− 2)

= x2 + x− 4

4. f(x)− g(x) = (x2 − 2)− (x− 2)

= x2 − 2− x+ 2

= x2 − x

Ex 62: Let f(x) = 3x − 2 and g(x) = x2. Find in factorized
form:

f(x)× g(x) = (3x− 2)x2

Answer: f(x)× g(x) = (3x− 2)× x2

= (3x− 2)x2

Ex 63: Let f(x) = 2x+ 5 and g(x) = x− 4. Find in factorized
form:

f(x)× g(x) = (2x+ 5)(x− 4)

Answer: f(x)× g(x) = (2x+ 5)× (x− 4)

= (2x+ 5)(x− 4)
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G.2 DECOMPOSING EXPRESSIONS INTO
FUNCTIONS

Ex 64: Find two functions f and g such that f(x) × g(x) =
(x+ 3)2(x− 2).

• f(x) = (x+ 3)2

• g(x) = x− 2

Answer: One possible pair is f(x) = (x + 3)2 and g(x) = x − 2,
since

f(x)× g(x) = (x+ 3)2 × (x− 2).

Ex 65: Find two functions f and g such that f(x) × g(x) =
(x2 + 4)(3x− 7).

• f(x) = x2 + 4

• g(x) = 3x− 7

Answer: One possible pair is f(x) = x2 + 4 and g(x) = 3x − 7,
since

f(x)× g(x) = (x2 + 4)× (3x− 7).

Ex 66: Find two functions f and g such that f(x) + g(x) =
(x− 2)2 +

√
x.

• f(x) = (x− 2)2

• g(x) =
√
x

Answer: One possible pair is f(x) = (x−2)2 and g(x) =
√
x, since

f(x) + g(x) = (x− 2)2 +
√
x.

Ex 67: Find two functions f and g such that f(x) + g(x) =
1

x
+ (x+ 1)2.

• f(x) =
1

x

• g(x) = (x+ 1)2

Answer: One possible pair is f(x) =
1

x
and g(x) = (x+ 1)2, since

f(x) + g(x) =
1

x
+ (x+ 1)2.

H COMPOSITION

H.1 EVALUATING COMPOSITE FUNCTIONS

Ex 68: For f(x) = 2x + 2 and g(x) = 3 − x, find in simplest
form:

1. f(g(3)) = 2

2. f(g(−1)) = 10

3. f(g(x)) = 8− 2x

4. g(f(x)) = 1− 2x

Answer:

1. f(g(3)) = f(3− 3)

= f(0)

= 2× 0 + 2

= 2

2. f(g(−1)) = f(3− (−1))
= f(4)

= 2× 4 + 2

= 8 + 2

= 10

3. f(g(x)) = f(3− x)

= 2(3− x) + 2

= 6− 2x+ 2

= 8− 2x

4. g(f(x)) = g(2x+ 2)

= 3− (2x+ 2)

= 3− 2x− 2

= 1− 2x

Ex 69: For f(x) = x2 + 2x and g(x) = 2 − x, find in simplest
form:

1. f(g(3)) = −1

2. f(g(−1)) = 15

3. f(g(x)) = x2 − 6x+ 8

4. g(f(x)) = 2− x2 − 2x

Answer:

1. f(g(3)) = f(2− 3)

= f(−1)
= (−1)2 + 2× (−1)
= 1− 2

= −1

2. f(g(−1)) = f(2− (−1))
= f(3)

= 32 + 2× 3

= 9 + 6

= 15

3. f(g(x)) = f(2− x)

= (2− x)2 + 2(2− x)

= (4− 4x+ x2) + (4− 2x)

= x2 − 6x+ 8

4. g(f(x)) = g(x2 + 2x)

= 2− (x2 + 2x)

= 2− x2 − 2x
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Ex 70: For f(x) = 3x− 5, find in simplest form:

1. f(f(−1)) = −29

2. f(f(x)) = 9x− 20

Answer:

1. f(f(−1)) = f(3× (−1)− 5)

= f(−8)
= 3× (−8)− 5

= −24− 5

= −29

2. f(f(x)) = f(3x− 5) (substituting x with (3x− 5))

= 3(3x− 5)− 5

= 9x− 15− 5

= 9x− 20

H.2 DECOMPOSING FUNCTIONS INTO
COMPOSITIONS

Ex 71: Find two functions f and g such that f(g(x)) =
√
2x− 1

and g(x) 6= x.

• f(x) =
√
x

• g(x) = 2x− 1

Answer: One possible pair is f(x) =
√
x and g(x) = 2x− 1, since

f(g(x)) = f(2x− 1)

=
√
2x− 1.

Ex 72: Find two functions f and g such that f(g(x)) = (x+2)5

and g(x) 6= x.

• f(x) = x5

• g(x) = x+ 2

Answer: One possible pair is f(x) = x5 and g(x) = x+ 2, since

f(g(x)) = f(x+ 2)

= (x+ 2)5.

Ex 73: Find two functions f and g such that f(g(x)) =
1

x2 + 1
and g(x) 6= x.

• f(x) =
1

x

• g(x) = x2 + 1

Answer: One possible pair is f(x) =
1

x
and g(x) = x2 + 1, since

f(g(x)) = f(x2 + 1)

=
1

x2 + 1
.

Ex 74: Find two functions f and g such that f(g(x)) = (x3 −
2)−4 and g(x) 6= x.

• f(x) = x−4

• g(x) = x3 − 2

Answer: One possible pair is f(x) = x−4 and g(x) = x3 − 2, since

f(g(x)) = f(x3 − 2)

= (x3 − 2)−4.

I INVERSE FUNCTION

I.1 FINDING AND CHECKING INVERSES

Ex 75:

1. Find the inverse of f(x) = x+ 3.

f−1(x) = x− 3

2. Evaluate

f−1(f(x)) = x
f(f−1(x)) = x

Answer:

1. Set y = x+ 3.
y = x+ 3

x = y − 3

So, the inverse function is f−1(x) = x− 3.

2.
f−1(f(x)) = f−1(x+ 3)

= (x+ 3)− 3

= x

3.
f(f−1(x)) = f(x− 3)

= (x− 3) + 3

= x

Ex 76:

1. Find the inverse of f(x) = 4x− 8.

f−1(x) =
x+ 8

4

2. Evaluate

f−1(f(x)) = x
f(f−1(x)) = x

Answer:

1. Set y = 4x− 8.
y = 4x− 8

y + 8 = 4x

x =
y + 8

4

So, the inverse function is f−1(x) = x+8
4 .
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2.
f−1(f(x)) = f−1(4x− 8)

=
(4x− 8) + 8

4

=
4x

4
= x

3.

f(f−1(x)) = f

(
x+ 8

4

)
= 4× x+ 8

4
− 8

= (x+ 8)− 8

= x

Ex 77:

1. Find the inverse of f(x) =
x

2
− 3.

f−1(x) = 2(x+ 3)

2. Evaluate

f−1(f(x)) = x
f(f−1(x)) = x

Answer:

1. Set y =
x

2
− 3.

y =
x

2
− 3

y + 3 =
x

2
2(y + 3) = x

x = 2(y + 3)

So, the inverse function is f−1(x) = 2(x+ 3).

2.
f−1(f(x)) = f−1

(x
2
− 3

)
= 2

(x
2
− 3 + 3

)
= 2× x

2
= x

3.
f(f−1(x)) = f (2(x+ 3))

=
2(x+ 3)

2
− 3

= (x+ 3)− 3

= x

I.2 GRAPHING THE INVERSE FUNCTION BY
REFLECTION

Ex 78: Draw the graph of the inverse function of the blue graph:

x
−1−2−3 1 2 3

y

−1

−2

−3

1

2

3

0

y = x

Answer: To draw the inverse, notice that the graph of f−1 is the
reflection of the graph of f across the line y = x. You can plot
two points on the blue line (for example, (−1,−3) and (2, 3)),
then swap their coordinates to get points (−3,−1) and (3, 2) on
the inverse. Draw the line passing through these points: this is
y = x+1

2 , shown below in red.

x
−1−2−3 1 2 3

y

−1

−2

−3

1

2

3

0

y = x

(−1,−3)

(2, 3)

(−3,−1)

(3, 2)

Ex 79: Draw the graph of the inverse function of the blue graph:

x
−1−2−3 1 2 3

y

−1

−2

−3

1

2

3

0

y = x

Answer: To draw the inverse, notice that the graph of f−1 is the
reflection of the graph of f across the line y = x. For instance,
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the blue line contains the points (−2,−3) and (3, 2). Swap their
coordinates to get (−3,−2) and (2, 3) on the inverse. Draw the
line passing through these points: this is y = x+1, shown below
in red.

x
−1−2−3 1 2 3

y

−1

−2

−3

1

2

3

0

y = x

(−2,−3)

(3, 2)

(−3,−2)

(2, 3)

Ex 80: Draw the graph of the inverse function of the blue graph:

x
−1−2 1 2 3 4

y

−1

−2

1

2

3

4

0

y = x

Answer: To draw the inverse graph, plot a few symmetric points:

• Take points from the blue curve, such as (0, 1) and (1, 2.7).

• Find their symmetric points with respect to the line y = x,
i.e., swap their coordinates: (1, 0) and (2.7, 1).

• Plot these new points.

• Draw a smooth curve through the symmetric points; this is
the graph of the inverse function.

You do **not** need to know the exact equation of the curve!

x
−1−2 1 2 3 4

y

−1

−2

1

2

3

4

0

y = x

(0, 1)

(1, 2.7)

(1, 0)

(2.7, 1)

Remark: The inverse graph is obtained by reflecting each point
of the blue curve across the line y = x.
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