A DEFINITIONS

A.1 WRITING FUNCTIONS: LEVEL 1

Ex 1: Consider the following calculation program:

- 1. Choose a number.
- 2. Subtract 5 from the chosen number.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) = \boxed{x - 5}$$

Answer: Given the following program:

- 1. Choose a number: x.
- 2. Subtract 5 from the chosen number: x 5.

Thus, the function is:

$$f(x) = x - 5$$

Ex 2: Consider the following calculation program:

- 1. Choose a number.
- 2. Multiply the chosen number by three.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) = \boxed{3x}$$

Answer: Given the following program:

- 1. Choose a number: x.
- 2. Multiply the chosen number by three: 3x.

Thus, the function is:

$$f(x) = 3x$$

Ex 3: Consider the following calculation program:

- 1. Choose a number.
- 2. Multiply the chosen number by five.
- 3. Subtract 2 from the result obtained.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) = \boxed{5x - 2}$$

Answer: Given the following program:

- 1. Choose a number: x.
- 2. Multiply the chosen number by five: 5x.
- 3. Subtract 2 from the result obtained: 5x 2.

Thus, the function is:

$$f(x) = 5x - 2$$

Ex 4: Consider the following calculation program:

- 1. Choose a number.
- 2. Multiply the chosen number by -2.
- 3. Add 5 to the result obtained.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) = \boxed{-2x + 5}$$

Answer: Given the following program:

- 1. Choose a number: x.
- 2. Multiply the chosen number by -2: -2x.
- 3. Add 5 to the result obtained: -2x + 5.

Thus, the function is:

$$f(x) = -2x + 5$$

A.2 WRITING FUNCTIONS: LEVEL 2

Ex 5: Consider the following calculation program:

- 1. Choose a number.
- 2. Multiply the chosen number by itself.
- 3. Subtract 1 from the result obtained.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) = \boxed{x^2 - 1}$$

Answer: Given the following program:

- 1. Choose a number: x.
- 2. Multiply the chosen number by itself: x^2 .
- 3. Subtract 1 from the result obtained: $x^2 1$.

Thus, the function is:

$$f(x) = x^2 - 1$$

Ex 6: Consider the following calculation program:

- 1. Choose a number.
- 2. Square the chosen number.
- 3. Multiply the result by 2.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) = 2x^2$$

Answer: Given the following program:

- 1. Choose a number: x.
- 2. Square the chosen number: x^2 .
- 3. Multiply the result by 2: $2x^2$.

Thus, the function is:

$$f(x) = 2x^2$$

Ex 7: Consider the following calculation program:

- 1. Choose a number.
- 2. Subtract 1 from the chosen number.
- 3. Multiply the result by the original number chosen.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) = \boxed{(x-1)x}$$

Answer: Given the following program:

- 1. Choose a number: x.
- 2. Subtract 1 from the chosen number: x-1.
- 3. Multiply the result by the original number: (x-1)x.

Thus, the function is:

$$f(x) = (x - 1)x$$

A.3 CALCULATING f(x)

Ex 8: For f(x) = x + 3,

$$f(4) = 7$$

Answer:

$$f(4) = (4) + 3 \quad \text{(substituting } x \text{ with } (4))$$
$$= 4 + 3$$
$$= 7$$

Ex 9: For f(x) = 2x - 1,

$$f(5) = 9$$

Answer:

$$f(5) = 2 \times (5) - 1$$
 (substituting x with (5))
= $10 - 1$
= 9

Ex 10: For f(x) = 3x + 2,

$$f(2) = 8$$

Answer:

$$f(2) = 3 \times (2) + 2$$
 (substituting x with (2))
= $6 + 2$
= 8

Ex 11: For $f(x) = x^2 - 1$,

$$f(3) = 8$$

Answer:

$$f(3) = (3)^2 - 1$$
 (substituting x with (3))
= 9 - 1
= 8

Ex 12: For f(x) = 5x - 3,

$$f(1) = 2$$

Answer:

$$f(1) = 5 \times (1) - 3 \quad \text{(substituting } x \text{ with } (1))$$
$$= 5 - 3$$
$$= 2$$

Ex 13: For $f(x) = \frac{x}{2} + 4$,

$$f(6) = 7$$

Answer:

$$f(6) = \frac{(6)}{2} + 4 \quad \text{(substituting } x \text{ with } (6)\text{)}$$
$$= 3 + 4$$
$$= 7$$

Ex 14: For f(x) = x - 5,

$$f(10) = 5$$

Answer:

$$f(10) = (10) - 5$$
 (substituting x with (10))
= 10 - 5
= 5

Ex 15: For f(x) = 2x - 5,

$$f(-2) = -9$$

Answer:

$$f(-2) = 2 \times (-2) - 5 \quad \text{(substituting } x \text{ with } (-2)\text{)}$$
$$= -4 - 5$$
$$= -9$$

Ex 16: For f(x) = -x + 4,

$$f(-3) = \boxed{7}$$

Answer:

$$f(-3) = -(-3) + 4 \quad \text{(substituting } x \text{ with } (-3))$$

$$= 3 + 4$$

$$= 7$$

Ex 17: For f(x) = 3x - 7,

$$f(-1) = -10$$

Answer:

$$f(-1) = 3 \times (-1) - 7 \quad \text{(substituting } x \text{ with } (-1))$$
$$= -3 - 7$$
$$= -10$$

Ex 18: For $f(x) = x^2 - 2x$,

$$f(-2) = 8$$

Answer:

$$f(-2) = (-2)^2 - 2 \times (-2)$$
 (substituting x with (-2))
= 4 + 4
= 8

Ex 19: For f(x) = 2x + 3,

$$f(-3) = \boxed{-3}$$

Answer:

$$f(-3) = 2 \times (-3) + 3 \quad \text{(substituting } x \text{ with } (-3))$$
$$= -6 + 3$$
$$= -3$$

Ex 20: For $f(x) = \frac{x}{2} - 4$,

$$f(8) = 0$$

Answer:

$$f(8) = \frac{(8)}{2} - 4 \quad \text{(substituting } x \text{ with } (8)\text{)}$$
$$= 4 - 4$$
$$= 0$$

Ex 21: For $f(x) = \frac{3x-5}{2}$,

$$f(-1) = \boxed{-4}$$

Answer:

$$f(-1) = \frac{3 \times (-1) - 5}{2}$$
 (substituting x with (-1))
$$= \frac{-3 - 5}{2}$$

$$= \frac{-8}{2}$$

Ex 22: For $f(x) = \frac{x-6}{2} - 3$,

$$f(10) = \boxed{-1}$$

Answer:

$$f(10) = \frac{(10) - 6}{2} - 3 \quad \text{(substituting } x \text{ with } (10))$$
$$= \frac{4}{2} - 3$$
$$= 2 - 3$$
$$= -1$$

A.4 CALCULATING f(x)

Ex 23: For $f : x \mapsto x + 3$,

$$f(4) = 7$$

Answer:

$$f(4) = (4) + 3$$
 (substituting x with (4))
= $4 + 3$
= 7

Ex 24: For $f: x \mapsto x^2 - 1$,

$$f(2) = 3$$

Answer:

$$f(2) = (2)^{2} - 1 \quad \text{(substituting } x \text{ with } (2)\text{)}$$
$$= 4 - 1$$
$$= 3$$

Ex 25: For $f: x \mapsto (x-1)(x-2)$,

$$f(0) = 2$$

Answer:

$$f(0) = (0-1)(0-2)$$
 (substituting x with (0))
= $(-1) \times (-2)$
= 2

Ex 26: For $f: x \mapsto x^3$,

$$f(-1) = \boxed{-1}$$

Answer:

$$f(-1) = (-1)^3 \quad \text{(substituting } x \text{ with } (-1))$$

A.5 SUBSTITUTING VALUES AND EXPRESSIONS INTO A FUNCTION

Ex 27: For $f: x \mapsto 1 - 3x$, find in simplest form:

- 1. $f(-2) = \boxed{7}$
- 2. $f(3) = \boxed{-8}$
- 3. $f(x+1) = \boxed{-3x-2}$
- 4. $f(x^2) = 1 3x^2$

1.
$$f(-2) = 1 - 3 \times (-2)$$
 (substituting x with -2)
= $1 + 6$
= 7

2.
$$f(3) = 1 - 3 \times 3$$
 (substituting x with 3)
= 1 - 9
= -8

3.
$$f(x+1) = 1 - 3(x+1)$$
 (substituting x with $(x+1)$)
= $1 - 3x - 3$ (expand)
= $-3x - 2$

4.
$$f(x^2) = 1 - 3(x^2)$$
 (substituting x with (x^2))
= $1 - 3x^2$

Ex 28: For $f: x \mapsto x^2$, find in simplest form:

1.
$$f(3) = \boxed{9}$$

2.
$$f(-1) = \boxed{1}$$

3.
$$f(-x) = x^2$$

4.
$$f(x+1) = x^2 + 2x + 1$$

5.
$$f(x+2) = |x^2 + 4x + 4|$$

6.
$$f(2x) = 4x^2$$

Answer:

1.
$$f(3) = 3^2 = 9$$

2.
$$f(-1) = (-1)^2 = 1$$

3.
$$f(-x) = (-x)^2$$
 (substituting x with $(-x)$)
$$= (-1)^2 x^2$$

$$= x^2$$

4.
$$f(x+1) = (x+1)^2$$
 (substituting x with $(x+1)$)
= $x^2 + 2x + 1$ (binomial expansion)

5.
$$f(x+2) = (x+2)^2$$
 (substituting x with $(x+2)$)
= $x^2 + 4x + 4$ (binomial expansion)

6.
$$f(2x) = (2x)^2$$
 (substituting x with $(2x)$)
= $4x^2$

Ex 29: For $g: x \mapsto x^2 - 2x + 1$, find in simplest form:

1.
$$g(3) = \boxed{4}$$

2.
$$g(-1) = \boxed{4}$$

3.
$$g(-x) = x^2 + 2x + 1$$

4.
$$g(x+1) = x^2$$

5.
$$g(x+2) = \sqrt{x^2 + 2x + 1}$$

6.
$$g(2x) = 4x^2 - 4x + 1$$

Answer:

1.
$$g(3) = (3)^2 - 2 \times (3) + 1$$
 (substituting x with 3)
= $9 - 6 + 1$ (evaluate)
= 4

2.
$$g(-1) = (-1)^2 - 2 \times (-1) + 1$$
 (substituting x with -1)
$$= 1 + 2 + 1$$
 (evaluate)
$$-4$$

3.
$$g(-x) = (-x)^2 - 2 \times (-x) + 1$$
 (substituting x with $(-x)$)
$$= x^2 + 2x + 1$$
 (expand)

4.
$$g(x+1) = (x+1)^2 - 2(x+1) + 1$$
 (substituting x with $(x+1) = (x^2 + 2x + 1) - (2x + 2) + 1$ (expand)
$$= x^2 + 2x + 1 - 2x - 2 + 1$$
 (combine)

5.
$$g(x+2) = (x+2)^2 - 2(x+2) + 1$$
 (substituting x with $(x+2) = (x^2 + 4x + 4) - (2x + 4) + 1$ (expand)
 $= x^2 + 4x + 4 - 2x - 4 + 1$ (combine)
 $= x^2 + 2x + 1$

6.
$$g(2x) = (2x)^2 - 2 \times (2x) + 1$$
 (substituting x with (2x))
= $4x^2 - 4x + 1$ (expand)

B TABLES OF VALUES

B.1 FILLING TABLES OF VALUES

Ex 30: For $f(x) = x^2$, fill in the table of values:

x	-2	-1	0	1	2
f(x)	4	1	0	1	4

Answer:

•
$$f(-2) = ((-2))^2$$
 (substituting x with (-2))
= 4

•
$$f(-1) = ((-1))^2$$
 (substituting x with (-1))
= 1

•
$$f(0) = (0)^2$$
 (substituting x with (0))
= 0

•
$$f(1) = (1)^2$$
 (substituting x with (1))
= 1

•
$$f(2) = (2)^2$$
 (substituting x with (2))
= 4

So the table of values is:

x	-2	-1	0	1	2
f(x)	4	1	0	1	4

Ex 31: For f(x) = -2x + 1, fill in the table:

x	-2	-1	0	1	2
f(x)	5	3	1	-1	-3

•
$$f(-2) = -2 \times (-2) + 1$$
 (substituting x with (-2))
= $4 + 1$
= 5

•
$$f(-1) = -2 \times (-1) + 1$$
 (substituting x with (-1))
= $2 + 1$
= 3

•
$$f(0) = -2 \times (0) + 1$$
 (substituting x with (0))
= $0 + 1$
= 1

•
$$f(1) = -2 \times (1) + 1$$
 (substituting x with (1))
= $-2 + 1$
= -1

•
$$f(2) = -2 \times (2) + 1$$
 (substituting x with (2))
= $-4 + 1$
= -3

So the table of values is:

	x	-2	-1	0	1	2
ĺ	f(x)	5	3	1	-1	-3

Ex 32: For $f(x) = x^2 - 3x + 1$, fill in the table:

x	-2	-1	0	1	2
f(x)	11	5	1	-1	-1

Answer:

•
$$f(-2) = ((-2))^2 - 3 \times (-2) + 1$$
 (substituting x with (-2))
= $4 + 6 + 1$
= 11

•
$$f(-1) = ((-1))^2 - 3 \times (-1) + 1$$
 (substituting x with (-1))
= $1 + 3 + 1$
= 5

•
$$f(0) = (0)^2 - 3 \times (0) + 1$$
 (substituting x with (0))
= $0 + 0 + 1$
= 1

•
$$f(1) = (1)^2 - 3 \times (1) + 1$$
 (substituting x with (1))
= $1 - 3 + 1$
= -1

•
$$f(2) = (2)^2 - 3 \times (2) + 1$$
 (substituting x with (2))
= $4 - 6 + 1$
= -1

So the table of values is:

x	-2	-1	0	1	2
f(x)	11	5	1	-1	-1

C GRAPHS

C.1 PLOTTING LINE GRAPHS

Ex 33: Here is a table of values for the function f(x) = x - 1:

x	-2	-1	0	1	2	3
f(x)	-3	-2	-1	0	1	2

Plot the line graph of f.

Answer: Plot the points (-2, -3), (-1, -2), (0, -1), (1, 0), (2, 1), and (3, 2). Then, connect the points with straight segments to form the line graph.

Ex 34: Here is a table of values for the function $f(x) = x^2$:

	x	-2	-1	-0.5	0	0.5	1	2
j	f(x)	4	1	0.25	0	0.25	1	4

Plot the line graph of f.

Answer: Plot the points (-2,4), (-1,1), (-0.5,0.25), (0,0), (0.5,0.25), (1,1), and (2,4). Then, connect the points with straight segments.

Ex 35: Here is a table of values for the function f(x) = -2x + 1:

	\overline{x}	-2	-1	0	1	2
ĺ	f(x)	5	3	1	-1	-3

Plot the line graph of f.

y3 -22 3 -2-3

Ex 36: Here is a table of values for the function f(x) = 0.5x - 1:

x	-3	-2	-1	0	1	2	3
f(x)	-2.5	-2	-1.5	-1	-0.5	0	0.5

Plot the line graph of f.

Then, connect the points with straight segments to form the line graph.

Answer: Plot the points (-2,5), (-1,3), (0,1), (1,-1), (2,-3). Answer: Plot the points (-3,-2.5), (-2,-2), (-1,-1.5), (0,-1), (1, -0.5), (2, 0), (3, 0.5). Then, connect the points with straight segments to form the line graph.

D READING VALUES AND SOLVING f(x) = y ON A GRAPH

 $f(1) = \boxed{-1}$

D.1 FINDING f(x)

Ex 37: The graph of y = f(x) is:

$$f(2) = 3$$

Ex 39: The graph of y = f(x) is:

Answer:

Answer:

$$f(-2) = \boxed{1}$$

Ex 38: The graph of y = f(x) is:

Ex 40: The graph of y = f(x) is:

$$f(1) = \boxed{0}$$

Answer:

Ex 41: The graph of y = f(x) is:

Answer:

D.2 FINDING x SUCH THAT f(x) = y

Ex 42: The graph of y = f(x) is:

Find x such that f(x) = -2.

$$x = \boxed{1}$$

Answer:

• Draw a horizontal line at y = -2.

• Identify the intersection point with the curve.

Ex 43: The graph of y = f(x) is:

Find x such that f(x) = 2.

$$x = \boxed{-1}$$

Answer:

• Draw a horizontal line at y = 2.

• Identify the intersection point with the curve.

Ex 44: The graph of y = f(x) is:

Find all x such that f(x) = 3. Give your answers in increasing order:

$$x = \boxed{-2}$$
 or $x = \boxed{2}$

Answer:

• Draw a horizontal line at y = 3.

• Identify the intersection points with the curve.

Ex 45: The graph of y = f(x) is:

Find x such that f(x) = 1.

$$x = \boxed{-2}$$

Answer:

• Draw a horizontal line at y = 1.

• Identify the intersection point with the curve.

E SOLVING f(x) = y ALGEBRAICALLY

E.1 SOLVING LINEAR EQUATIONS FOR f(x) = y

Ex 46: Let f(x) = 3x + 12. Find all x such that f(x) = 0. Justify your answer.

Answer: We solve the equation:

$$f(x) = 0$$

 $3x + 12 = 0$
 $3x = -12$ (subtract 12 from both sides)
 $x = -4$ (divide both sides by 3)

So the solution is x = -4.

(Optional) We can check this by calculating f(-4):

$$f(-4) = 3 \times (-4) + 12$$
$$= -12 + 12$$
$$= 0$$

Ex 47: Let f(x) = 2x - 18. Find all x such that f(x) = 0. Justify your answer.

Answer: We solve the equation:

$$f(x) = 0$$

$$2x - 18 = 0$$

$$2x - 18 + 18 = 0 + 18 \quad \text{(add 18 to both sides)}$$

$$2x = 18$$

$$\frac{2x}{2} = \frac{18}{2} \quad \text{(divide both sides by 2)}$$

$$x = 9$$

So the solution is x = 9.(Optional) We can check this by calculating f(9):

$$f(9) = 2 \times 9 - 18$$

= 18 - 18
= 0

Ex 48: Let f(x) = 2x + 20. Find all x such that f(x) = 10. Justify your answer.

Answer: We solve the equation:

$$f(x) = 10$$

$$2x + 20 = 10$$

$$2x + 20 - 20 = 10 - 20$$
 (subtract 20 from both sides)
$$2x = -10$$

$$\frac{2x}{2} = \frac{-10}{2}$$
 (divide both sides by 2)
$$x = -5$$

So the solution is x = -5.(Optional) We can check this by calculating f(-5):

$$f(-5) = 2 \times (-5) + 20$$

= -10 + 20
= 10

Ex 49: Let f(x) = -6x + 7. Find all x such that f(x) = 2. Justify your answer.

Answer: We solve the equation:

$$f(x) = 2$$

$$-6x + 7 = 2$$

$$-6x + 7 - 7 = 2 - 7 \quad \text{(subtract 7 from both sides)}$$

$$-6x = -5$$

$$\frac{-6x}{-6} = \frac{-5}{-6} \quad \text{(divide both sides by } -6\text{)}$$

$$x = \frac{5}{6}$$

So the solution is $x = \frac{5}{6}$. (Optional) We can check this by calculating $f(\frac{5}{6})$:

$$f\left(\frac{5}{6}\right) = -6 \times \frac{5}{6} + 7$$
$$= -5 + 7$$
$$= 2$$

E.2 ANALYZING LINEAR MODELS IN CONTEXT

Ex 50: The value of a laptop t years after purchase is given by V(t) = 1800 - 300t dollars.

1. Find V(3)

900

State what this value means

The value of the laptop after 3 years is \$900.

2. Find t when V(t) = 600.

4

Explain what this represents.

After 4 years, the laptop is worth \$600.

3. Find the original purchase price of the laptop.

1800

Answer:

- 1. $V(3) = 1800 300 \times 3 = 1800 900 = 900$. This means the value of the laptop after 3 years is \$900.
- 2. Solve 1800 300t = 600:

$$1800 - 300t = 600$$
$$1800 - 600 = 300t$$
$$1200 = 300t$$
$$t = 4.$$

This represents that after 4 years, the laptop is worth \$600.

3. The original purchase price is $V(0) = 1800 - 300 \times 0 = 1800$ dollars.

Ex 51: The height of a plant t weeks after planting is given by H(t) = 5 + 2t cm.

1. Find H(4)

13

State what this value means

The height of the plant after 4 weeks is 13 cm.

2. Find t when H(t) = 15.

5

Explain what this represents.

After 5 weeks, the plant is 15 cm tall.

3. Find the initial height of the plant.

5

- 1. $H(4) = 5 + 2 \times 4 = 5 + 8 = 13$. This means the height of the plant after 4 weeks is 13 cm.
- 2. Solve 5 + 2t = 15:

$$5 + 2t = 15$$
$$2t = 10$$
$$t = 5.$$

This represents that after 5 weeks, the plant is 15 cm tall.

3. The initial height is $H(0) = 5 + 2 \times 0 = 5$ cm.

The temperature of water t minutes after starting to heat it is given by $T(t) = 25 + 15t^{\circ}$ degrees Celsius.

1. Find T(3)

70

State what this value means

The temperature of the water after 3 minutes is 70° C. \square $\{x \in \mathbb{R} \mid x \neq 0\}$

2. Find t when T(t) = 100.

5

Explain what this represents.

3. Find the initial temperature of the water.

25

Answer:

- 1. $T(3) = 25 + 15 \times 3 = 25 + 45 = 70$. This means the temperature of the water after 3 minutes is 70°C.
- 2. Solve 25 + 15t = 100:

$$25 + 15t = 100$$
$$15t = 75$$
$$t = 5.$$

This represents that after 5 minutes, the water reaches boiling point at 100°C.

3. The initial temperature is $T(0) = 25 + 15 \times 0 = 25^{\circ}$ C.

DOMAIN

F.1 FINDING DOMAINS: LEVEL 1

MCQ 53: Find the domain of the function $f: x \mapsto x^2$.

 $\boxtimes \mathbb{R}$

- $\square \{x \in \mathbb{R} \mid x \neq 0\}$
- \square $[0,+\infty)$
- \Box $(-\infty,0)$

Answer: The function $f(x) = x^2$ is defined for all real numbers because squaring any real number yields a real result. Therefore, the domain is all real numbers, which is \mathbb{R} .

MCQ 54: Find the domain of the function $f: x \mapsto \frac{1}{x}$.

- \square \mathbb{R}
- $\boxtimes \{x \in \mathbb{R} \mid x \neq 0\}$
- \square $[0,+\infty)$
- \Box $(-\infty,0)$

Answer: The function $f(x) = \frac{1}{x}$ is undefined at x = 0 because division by zero is not allowed. Therefore, the domain is all real numbers except 0, which is $\{x \in \mathbb{R} \mid x \neq 0\}$.

MCQ 55: Find the domain of the function $f: x \mapsto \sqrt{x}$.

 \square \mathbb{R}

 \boxtimes $[0,+\infty)$ \Box $(-\infty,0)$

Answer: The function $f(x) = \sqrt{x}$ is undefined for negative real After 5 minutes, the water reaches boiling point at 100 Cran because the square root of a negative number is not Therefore, the domain is all non-negative real numbers, which is $[0, +\infty)$.

F.2 FINDING DOMAINS: LEVEL 2

MCQ 56: Find the domain of the function $f: x \mapsto \sqrt{2x-4}$.

- \square \mathbb{R}
- $\square \{x \in \mathbb{R} \mid x \neq 4\}$
- \boxtimes $[2,+\infty)$
- \Box $(-\infty,4]$

Answer: The function $f(x) = \sqrt{2x-4}$ is undefined when the expression inside the square root is negative, i.e., when 2x-4 < 0. Solving this inequality:

$$2x - 4 < 0$$

 $2x < 4$ (adding 4 to both sides)
 $x < 2$ (dividing both sides by 2)

Therefore, the function is defined for $x \geq 2$, so the domain is

MCQ 57: Find the domain of the function $f: x \mapsto \frac{x}{x-3}$.

- $\square \{x \in \mathbb{R} \mid x \neq 3 \text{ and } x \neq 0\}$
- \Box $[3, +\infty)$
- \Box $(-\infty,3)$
- $\boxtimes \{x \in \mathbb{R} \mid x \neq 3\}$

Answer: The function $f(x) = \frac{x}{x-3}$ is undefined when the denominator is zero, i.e., when x-3=0. Solving this equation:

$$x - 3 = 0$$
$$x = 3$$

Therefore, the function is defined for all real numbers except x=3, so the domain is $\{x\in\mathbb{R}\mid x\neq 3\}$.

MCQ 58: Find the domain of the function $f: x \mapsto \frac{1}{x^2 - 9}$.

- \square \mathbb{R}
- \Box (-3,3)
- $\Box [0,+\infty)$
- $\boxtimes \{x \in \mathbb{R} \mid x \neq -3 \text{ and } x \neq 3\}$
- $\square x > 3$

Answer: The function $f(x) = \frac{1}{x^2 - 9}$ is undefined when the denominator is zero, i.e., when $x^2 - 9 = 0$. Solving this equation:

$$x^{2} - 9 = 0$$

$$x^{2} = 9$$

$$x = 3 \quad \text{or} \quad x = -3$$

Therefore, the function is defined for all real numbers except x = 3 and x = -3, so the domain is $\{x \in \mathbb{R} \mid x \neq 3 \text{ and } x \neq -3\}$.

MCQ 59: Find the domain of the function $f: x \mapsto \sqrt{6-2x}$.

- $\square \mathbb{R}$
- $\boxtimes (-\infty, 3]$
- \square $[3, +\infty)$
- $\Box (-\infty, 6]$

Answer: The function $f(x) = \sqrt{6-2x}$ is undefined when the expression inside the square root is negative, i.e., when 6-2x < 0. Solving this inequality:

- 6 2x < 0
 - -2x < -6 (subtract 6 from both sides)
 - x > 3 (divide both sides by -2, reverse the sign)

Therefore, the function is defined for $x \leq 3$, so the domain is $(-\infty, 3]$.

G ALGEBRA OF FUNCTIONS

G.1 ADDING, SUBTRACTING, AND MULTIPLYING FUNCTIONS

Ex 60: For f(x) = 2x + 2 and g(x) = 3 - x, find in simplest form:

- 1. $f(3) + g(3) = \boxed{8}$
- 2. $f(-1) + g(-1) = \boxed{4}$
- 3. $f(x) + g(x) = \boxed{x+5}$

4.
$$g(x) + f(x) = x + 5$$

Answer:

1.
$$f(3) + g(3) = (2 \times 3 + 2) + (3 - 3)$$

= $(6 + 2) + 0$
= $8 + 0$
= 8

2.
$$f(-1) + g(-1) = (2 \times (-1) + 2) + (3 - (-1))$$

= $(-2 + 2) + (3 + 1)$
= $0 + 4$
= 4

3.
$$f(x) + g(x) = (2x + 2) + (3 - x)$$

= $2x + 2 + 3 - x$
= $x + 5$

4.
$$g(x) + f(x) = (3 - x) + (2x + 2)$$

= $3 - x + 2x + 2$
= $x + 5$

Ex 61: For $f(x) = x^2 - 2$ and g(x) = x - 2, find in simplest form:

- 1. $f(0) + g(0) = \boxed{-4}$
- 2. $f(-2) + g(-2) = \boxed{-2}$
- 3. $f(x) + g(x) = x^2 + x 4$
- 4. $f(x) g(x) = x^2 x$

Answer:

1.
$$f(0) + g(0) = (0^2 - 2) + (0 - 2)$$

= $(-2) + (-2)$
= -4

2.
$$f(-2) + g(-2) = ((-2)^2 - 2) + (-2 - 2)$$

= $(4-2) + (-4)$
= $2-4$
= -2

3.
$$f(x) + g(x) = (x^2 - 2) + (x - 2)$$

= $x^2 + x - 4$

4.
$$f(x) - g(x) = (x^2 - 2) - (x - 2)$$

= $x^2 - 2 - x + 2$
= $x^2 - x$

Ex 62: Let f(x) = 3x - 2 and $g(x) = x^2$. Find in factorized form:

$$f(x) \times g(x) = \boxed{(3x-2)x^2}$$

Answer:
$$f(x) \times g(x) = (3x - 2) \times x^2$$

= $(3x - 2)x^2$

Ex 63: Let f(x) = 2x + 5 and g(x) = x - 4. Find in factorized form:

$$f(x) \times g(x) = \boxed{(2x+5)(x-4)}$$

Answer:
$$f(x) \times g(x) = (2x+5) \times (x-4)$$

= $(2x+5)(x-4)$

G.2 DECOMPOSING EXPRESSIONS INTO FUNCTIONS

Ex 64: Find two functions f and g such that $f(x) \times g(x) = (x+3)^2(x-2)$.

- $f(x) = (x+3)^2$
- $g(x) = \boxed{x-2}$

Answer: One possible pair is $f(x) = (x+3)^2$ and g(x) = x-2, since

$$f(x) \times g(x) = (x+3)^2 \times (x-2).$$

Ex 65: Find two functions f and g such that $f(x) \times g(x) = (x^2 + 4)(3x - 7)$.

- $f(x) = x^2 + 4$
- g(x) = 3x 7

Answer: One possible pair is $f(x) = x^2 + 4$ and g(x) = 3x - 7, since

$$f(x) \times g(x) = (x^2 + 4) \times (3x - 7).$$

Ex 66: Find two functions f and g such that $f(x) + g(x) = (x-2)^2 + \sqrt{x}$.

- $f(x) = (x-2)^2$
- $g(x) = \sqrt{x}$

Answer: One possible pair is $f(x) = (x-2)^2$ and $g(x) = \sqrt{x}$, since

$$f(x) + g(x) = (x-2)^2 + \sqrt{x}$$
.

Ex 67: Find two functions f and g such that $f(x) + g(x) = \frac{1}{x} + (x+1)^2$.

- $f(x) = \boxed{\frac{1}{x}}$
- $g(x) = (x+1)^2$

Answer: One possible pair is $f(x) = \frac{1}{x}$ and $g(x) = (x+1)^2$, since

$$f(x) + g(x) = \frac{1}{x} + (x+1)^2.$$

H COMPOSITION

H.1 EVALUATING COMPOSITE FUNCTIONS

Ex 68: For f(x) = 2x + 2 and g(x) = 3 - x, find in simplest form:

- 1. $f(g(3)) = \boxed{2}$
- 2. $f(g(-1)) = \boxed{10}$
- 3. f(g(x)) = 8 2x

4.
$$g(f(x)) = 1 - 2x$$

Answer:

1.
$$f(g(3)) = f(3-3)$$

= $f(0)$
= $2 \times 0 + 2$

2.
$$f(g(-1)) = f(3 - (-1))$$

= $f(4)$
= $2 \times 4 + 2$
= $8 + 2$
= 10

3.
$$f(g(x)) = f(3-x)$$

= $2(3-x) + 2$
= $6-2x+2$
= $8-2x$

$$4. \ g(f(x)) = g(2x+2)$$

$$= 3 - (2x+2)$$

$$= 3 - 2x - 2$$

$$= 1 - 2x$$

Ex 69: For $f(x) = x^2 + 2x$ and g(x) = 2 - x, find in simplest form:

- 1. $f(g(3)) = \boxed{-1}$
- 2. $f(g(-1)) = \boxed{15}$
- 3. $f(g(x)) = x^2 6x + 8$
- 4. $g(f(x)) = 2 x^2 2x$

Answer.

1.
$$f(g(3)) = f(2-3)$$

= $f(-1)$
= $(-1)^2 + 2 \times (-1)$
= $1-2$
= -1

2.
$$f(g(-1)) = f(2 - (-1))$$

= $f(3)$
= $3^2 + 2 \times 3$
= $9 + 6$
= 15

3.
$$f(g(x)) = f(2-x)$$
$$= (2-x)^{2} + 2(2-x)$$
$$= (4-4x+x^{2}) + (4-2x)$$
$$= x^{2} - 6x + 8$$

4.
$$g(f(x)) = g(x^2 + 2x)$$

= $2 - (x^2 + 2x)$
= $2 - x^2 - 2x$

Ex 70: For f(x) = 3x - 5, find in simplest form:

1.
$$f(f(-1)) = \boxed{-29}$$

2.
$$f(f(x)) = 9x - 20$$

Answer:

1.
$$f(f(-1)) = f(3 \times (-1) - 5)$$

= $f(-8)$
= $3 \times (-8) - 5$
= $-24 - 5$
- -29

2.
$$f(f(x)) = f(3x - 5)$$
 (substituting x with $(3x - 5)$)
= $3(3x - 5) - 5$
= $9x - 15 - 5$
= $9x - 20$

H.2 DECOMPOSING FUNCTIONS INTO COMPOSITIONS

Ex 71: Find two functions f and g such that $f(g(x)) = \sqrt{2x-1}$ and $g(x) \neq x$.

- $f(x) = \sqrt{x}$
- g(x) = 2x 1

Answer: One possible pair is $f(x) = \sqrt{x}$ and g(x) = 2x - 1, since

$$f(g(x)) = f(2x - 1)$$
$$= \sqrt{2x - 1}.$$

Ex 72: Find two functions f and g such that $f(g(x)) = (x+2)^5$ and $g(x) \neq x$.

- $f(x) = \boxed{x^5}$
- $g(x) = \boxed{x+2}$

Answer: One possible pair is $f(x) = x^5$ and g(x) = x + 2, since

$$f(g(x)) = f(x+2)$$
$$= (x+2)^5.$$

Ex 73: Find two functions f and g such that $f(g(x)) = \frac{1}{x^2 + 1}$ and $g(x) \neq x$.

- $f(x) = \boxed{\frac{1}{x}}$
- $g(x) = x^2 + 1$

Answer: One possible pair is $f(x) = \frac{1}{x}$ and $g(x) = x^2 + 1$, since

$$f(g(x)) = f(x^2 + 1)$$

= $\frac{1}{x^2 + 1}$.

Ex 74: Find two functions f and g such that $f(g(x)) = (x^3 - 2)^{-4}$ and $g(x) \neq x$.

- $f(x) = x^{-4}$
- $\bullet \ g(x) = \boxed{x^3 2}$

Answer: One possible pair is $f(x) = x^{-4}$ and $g(x) = x^3 - 2$, since

$$f(g(x)) = f(x^3 - 2)$$

= $(x^3 - 2)^{-4}$.

I INVERSE FUNCTION

I.1 FINDING AND CHECKING INVERSES

Ex 75:

1. Find the inverse of f(x) = x + 3.

$$f^{-1}(x) = \boxed{x - 3}$$

2. Evaluate

$$f^{-1}(f(x)) = \boxed{x}$$
$$f(f^{-1}(x)) = \boxed{x}$$

Answer:

1. Set y = x + 3.

$$y = x + 3$$
$$x = y - 3$$

So, the inverse function is $f^{-1}(x) = x - 3$.

2.

$$f^{-1}(f(x)) = f^{-1}(x+3)$$

= $(x+3) - 3$
- x

3.

$$f(f^{-1}(x)) = f(x-3)$$

= $(x-3) + 3$
= x

Ex 76:

1. Find the inverse of f(x) = 4x - 8.

$$f^{-1}(x) = \boxed{\frac{x+8}{4}}$$

2. Evaluate

$$f^{-1}(f(x)) = \boxed{x}$$
$$f(f^{-1}(x)) = \boxed{x}$$

Answer

1. Set y = 4x - 8.

$$y = 4x - 8$$
$$y + 8 = 4x$$
$$x = \frac{y + 8}{4}$$

So, the inverse function is $f^{-1}(x) = \frac{x+8}{4}$.

2.

$$f^{-1}(f(x)) = f^{-1}(4x - 8)$$

$$= \frac{(4x - 8) + 8}{4}$$

$$= \frac{4x}{4}$$

$$= x$$

3.

$$f(f^{-1}(x)) = f\left(\frac{x+8}{4}\right)$$
$$= 4 \times \frac{x+8}{4} - 8$$
$$= (x+8) - 8$$
$$= x$$

Ex 77:

1. Find the inverse of $f(x) = \frac{x}{2} - 3$.

$$f^{-1}(x) = 2(x+3)$$

2. Evaluate

$$f^{-1}(f(x)) = \boxed{x}$$
$$f(f^{-1}(x)) = \boxed{x}$$

Answer:

1. Set $y = \frac{x}{2} - 3$.

$$y = \frac{x}{2} - 3$$
$$y + 3 = \frac{x}{2}$$
$$2(y + 3) = x$$
$$x = 2(y + 3)$$

So, the inverse function is $f^{-1}(x) = 2(x+3)$.

2.

$$f^{-1}(f(x)) = f^{-1}\left(\frac{x}{2} - 3\right)$$
$$= 2\left(\frac{x}{2} - 3 + 3\right)$$
$$= 2 \times \frac{x}{2}$$
$$= x$$

3.

$$f(f^{-1}(x)) = f(2(x+3))$$

$$= \frac{2(x+3)}{2} - 3$$

$$= (x+3) - 3$$

$$= x$$

I.2 GRAPHING THE INVERSE FUNCTION BY REFLECTION

Ex 78: Draw the graph of the inverse function of the blue graph:

Answer: To draw the inverse, notice that the graph of f^{-1} is the reflection of the graph of f across the line y=x. You can plot two points on the blue line (for example, (-1,-3) and (2,3)), then swap their coordinates to get points (-3,-1) and (3,2) on the inverse. Draw the line passing through these points: this is $y=\frac{x+1}{2}$, shown below in red.

Ex 79: Draw the graph of the inverse function of the blue graph:

Answer: To draw the inverse, notice that the graph of f^{-1} is the reflection of the graph of f across the line y = x. For instance,

the blue line contains the points (-2,-3) and (3,2). Swap their coordinates to get (-3,-2) and (2,3) on the inverse. Draw the line passing through these points: this is y=x+1, shown below in red.

Remark: The inverse graph is obtained by reflecting each point of the blue curve across the line y = x.

Ex 80: Draw the graph of the inverse function of the blue graph:

Answer: To draw the inverse graph, plot a few symmetric points:

- \bullet Take points from the blue curve, such as (0,1) and (1,2.7).
- Find their symmetric points with respect to the line y = x, i.e., swap their coordinates: (1,0) and (2.7,1).
- Plot these new points.
- Draw a smooth curve through the symmetric points; this is the graph of the inverse function.

You do **not** need to know the exact equation of the curve!