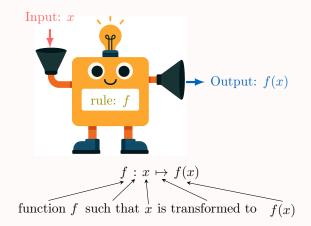
A DEFINITIONS

Definition Function

From an input value x, a function f produces an output value f(x). We can write:



- f(x) is read as "f of x".
- f(x) is called the **image** of x.

Ex: For f(x) = 2x - 1 (the function that doubles the input and subtracts 1), find f(5).

Answer:
$$f(5) = 2 \times (5) - 1$$
 (substituting x by (5))
= 9

B TABLES OF VALUES

Definition Table of Values

The table of values for a function f provides a listing of pairs (x, f(x)), where x is an input value and f(x) is the corresponding output value produced by the function f.

Ex: For $f(x) = x^2$, complete the following table:

x	-2	-1	0	1	2
f(x)					

Answer:

- $f(-2) = (-2)^2$ (substituting x by (-2)) = 4
- $f(-1) = (-1)^2$ (substituting x by (-1)) = 1
- $f(0) = (0)^2$ (substituting x by (0)) = 0
- $f(1) = (1)^2$ (substituting x by (1)) = 1
- $f(2) = (2)^2$ (substituting x by (2)) = 4

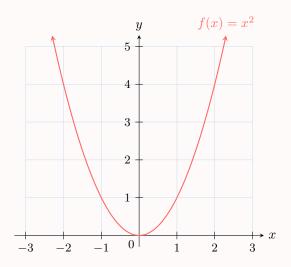
So the completed table is:

x	-2	-1	0	1	2
f(x)	4	1	0	1	4

C GRAPHS

Definition **Graph**

A graph of a function is the set of all points (x, f(x)) in the plane, where x is an input and f(x) is its output.



Method Plotting a Line Graph from a Table

To plot the graph of a function from a table of values, follow these steps:

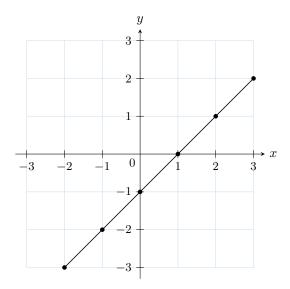
- Plot each point (x, f(x)) from the table onto the coordinate plane.
- Connect the points with straight line segments.

Ex: Here is a table of values for the function f(x) = x - 1:

x	-2	-1	0	1	2	3
f(x)	-3	-2	-1	0	1	2

Plot the line graph of f.

Answer: Plot the points (-2, -3), (-1, -2), (0, -1), (1, 0), (2, 1), and (3, 2). Then, connect the points with straight segments to form the line graph.

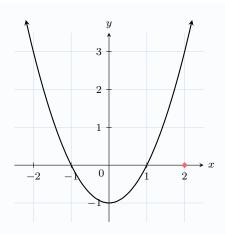


D READING VALUES AND SOLVING f(x) = y ON A GRAPH

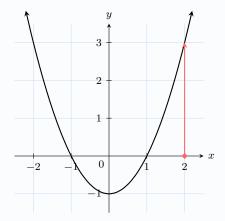
Method Finding the value f(x) using a graph

To find f(2) on a graph, follow these steps:

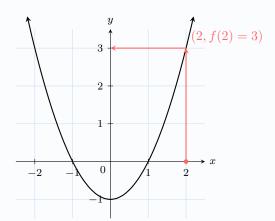
1. Locate the x-value: Find x = 2 on the x-axis.



2. Move vertically to the curve: From x=2, draw a vertical line up to the graph.



3. Read the y-value: At the intersection with the curve, move horizontally to the y-axis to find the value f(2).

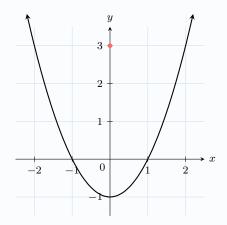


Thus, f(2) = 3.

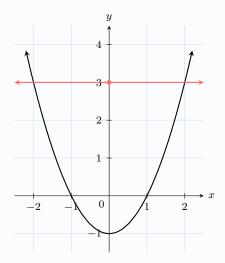
Method Finding x such that f(x) = y using a graph

To find x where f(x) = 3 on this graph:

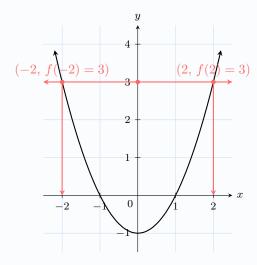
1. Locate the y-value on the y-axis: Find 3 on the y-axis.



2. Draw horizontally to the graph of the function: Draw a horizontal line from y=3 to the curve.



3. Read the x-values: From the intersection points, draw vertical lines down to the x-axis and read the corresponding x-values.



Thus, the values of x for which f(x) = 3 are x = 2 and x = -2.

$\ \, \textbf{E} \ \, \textbf{SOLVING} \, \, f(x) = y \, \, \textbf{ALGEBRAICALLY}$

Method Solving f(x) = y algebraically

To find x such that f(x) = y:

- Write the equation f(x) = y.
- Solve for x using algebraic methods (e.g., inverse operations, isolating x).

Ex: Let f(x) = 3x + 12. Find all x such that f(x) = 0.

Answer: We solve the equation:

$$f(x) = 0$$

$$3x + 12 = 0$$

$$3x + 12 - 12 = 0 - 12 \quad \text{(subtract 12 from both sides)}$$

$$3x = -12$$

$$\frac{3x}{3} = \frac{-12}{3} \quad \text{(divide both sides by 3)}$$

$$x = -4$$

So the solution is x = -4.

We can check this by calculating f(-4):

$$f(-4) = 3 \times (-4) + 12 = -12 + 12 = 0$$

So f(-4) = 0, as expected.

F DOMAIN

Definition **Domain**

Given a function, the domain is the set of possible x values for which the function is defined.

Method Finding the Domain .

To find the domain of a function, identify the values of x that make the function undefined (such as division by zero or taking the square root of a negative number), and exclude them from the set of all real numbers.

Ex: Find the domain of the function $f(x) = \sqrt{x}$.

Answer: The square root is undefined for negative numbers $(\sqrt{-1})$ is undefined. So, the domain is $[0, +\infty)$.

G ALGEBRA OF FUNCTIONS

Definition Operations on Functions

Given functions f and g:

- The sum of functions is $x \mapsto f(x) + g(x)$.
- The product of functions is $x \mapsto f(x) \times g(x)$.

Ex: Let f(x) = 2x + 1 and $g(x) = x^4 - 1$. Find f(x) + g(x).

Answer:
$$f(x) + g(x) = (2x+1) + (x^4 - 1)$$

= $x^4 + 2x$

H COMPOSITION

Definition Composition of Functions

Given two functions f and g, the composition of functions of f and g is $x \mapsto f(g(x))$.

This means you first apply g to x, then apply f to the result.

Ex: Let $f(x) = x^2$ and g(x) = 2x + 1.

1. Find f(g(x)).

2. Find g(f(x)).

3. Is
$$f(g(x)) = g(f(x))$$
?

Answer:

1.
$$f(g(x)) = f(g(x))$$

= $f(2x + 1)$
= $(2x + 1)^2$
= $4x^2 + 4x + 1$

2.
$$g(f(x)) = g(f(x))$$
$$= g(x^{2})$$
$$= 2x^{2} + 1$$

3. So $f(g(x)) \neq g(f(x))$.

I INVERSE FUNCTION

The operations of + and -, and \times and \div , are called **inverse operations** because one "undoes" the other.

In a similar way, some functions have inverse functions that "undo" the effect of the original function.

Definition of an inverse function: If a function f takes x and produces f(x), then the **inverse function** f^{-1} reverses this process: it takes f(x) and returns x. That is, applying f and then f^{-1} brings you back to where you started, and vice versa.

Definition Inverse Function —

A function f^{-1} is called the **inverse function** of f if:

$$f^{-1}(f(x)) = x$$
 and $f(f^{-1}(x)) = x$.

When does an inverse exist?

A function f has an inverse function f^{-1} only if, for every value of f(x), there is exactly *one* value of x that produces it (i.e., f is one-to-one).

Method Finding the Inverse Function

To find the inverse of f(x):

- 1. Set y = f(x).
- 2. Solve the equation for x in terms of y.
- 3. Replace y with x; the result is $f^{-1}(x)$.

Ex: Find the inverse of f(x) = 4x - 8.

Answer: Set y = 4x - 8.

$$y = 4x - 8$$
$$y + 8 = 4x$$
$$x = \frac{y + 8}{4}$$

So, the inverse function is $f^{-1}(x) = \frac{x+8}{4}$.

Proposition Symmetry of the Graphs of a Function and Its Inverse

The graph of a function f and its inverse f^{-1} are symmetric with respect to the line y = x (the first bisector).