A DEFINITIONS

A.1 DETERMINING FUNCTIONS: LEVEL 1

MCQ 1: Consider the following calculation program:

- 1. Choose a number.
- 2. Add 2 to the chosen number.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

Choose one answer:

- $\Box f(x) = 2x$
- $\boxtimes f(x) = x + 2$
- $\Box f(x) = x 2$
- $\Box f(x) = 2x + 2$

Answer: Given the following program:

- 1. Choose a number: x.
- 2. Add 2 to the chosen number: x + 2.

Thus, the function is:

$$f(x) = x + 2$$

MCQ 2: Consider the following calculation program:

- 1. Choose a number.
- 2. Multiply the chosen number by 3.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

Choose one answer:

- $\boxtimes f(x) = 3x$
- $\Box f(x) = x + 3$
- $\Box f(x) = x 3$
- $\Box f(x) = 3x + 3$

Answer: Given the following program:

- 1. Choose a number: x.
- 2. Multiply the chosen number by 3: 3x.

Thus, the function is:

$$f(x) = 3x$$

MCQ 3: Consider the following calculation program:

- 1. Choose a number.
- 2. Multiply the chosen number by five.
- 3. Subtract 2 from the result obtained.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

Choose one answer:

$$\Box f(x) = 5x + 2$$

$$\Box f(x) = 5x^2 - 2$$

$$\Box f(x) = x - 2$$

$$\boxtimes f(x) = 5x - 2$$

Answer: Given the following program:

- 1. Choose a number: x.
- 2. Multiply the chosen number by five: 5x.
- 3. Subtract 2 from the result obtained: 5x 2.

Thus, the function is:

$$f(x) = 5x - 2$$

MCQ 4: Consider the following calculation program:

- 1. Choose a number.
- 2. Multiply the chosen number by -2.
- 3. Add 3 to the result obtained.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

Choose one answer:

$$\boxtimes f(x) = -2x + 3$$

$$\Box f(x) = -2x - 3$$

$$\Box f(x) = 2x + 3$$

$$\Box f(x) = 2x - 3$$

Answer: Given the following program:

- 1. Choose a number: x.
- 2. Multiply the chosen number by -2: -2x.
- 3. Add 3 to the result obtained: -2x + 3.

Thus, the function is:

$$f(x) = -2x + 3$$

A.2 DETERMINING FUNCTIONS: LEVEL 2

MCQ 5: Consider the following calculation program:

- 1. Choose a number.
- 2. Multiply the chosen number by itself.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

Choose one answer:

$$\Box f(x) = 2x$$

$$\Box f(x) = x + 2$$

$$\Box f(x) = 2x^2$$

$$\boxtimes f(x) = x^2$$

Answer: Given the following program:

- 1. Choose a number: x.
- 2. Multiply the chosen number by itself: $x \times x = x^2$.

Thus, the function is:

$$f(x) = x^2$$

MCQ 6: Consider the following calculation program:

- 1. Choose a number.
- 2. Multiply the chosen number by itself.
- 3. Subtract 3 from the product obtained.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

Choose one answer:

$$\boxtimes f(x) = x^2 - 3$$

$$\Box f(x) = x - 3$$

$$\Box f(x) = x - 3x$$

$$\Box f(x) = x^2 + 3x$$

Answer: Given the following program:

- 1. Choose a number: x.
- 2. Multiply the chosen number by itself: $x \times x = x^2$.
- 3. Subtract 3 from the product obtained: $x^2 3$.

Thus, the function is:

$$f(x) = x^2 - 3$$

MCQ 7: Consider the following calculation program:

- 1. Choose a number.
- 2. Add 3 to the chosen number.
- 3. Multiply the result by the original chosen number.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

Choose one answer:

$$\Box f(x) = x + 3x$$

$$\boxtimes f(x) = (x+3)x$$

$$\Box f(x) = x(x+3) + 3$$

$$\Box f(x) = 3x^2 + x$$

Answer: Given the following program:

- 1. Choose a number: x.
- 2. Add 3 to the chosen number: x + 3.
- 3. Multiply the result by the original chosen number: $(x+3) \times x$.

Thus, the function is:

$$f(x) = (x+3)x$$

MCQ 8: Consider the following calculation program:

- 1. Choose a number.
- 2. Add 4 to the chosen number.
- 3. Divide the result by the chosen number.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

Choose one answer:

$$\boxtimes f(x) = \frac{x+4}{x}$$

$$\Box f(x) = \frac{x+4}{2}$$

$$\Box f(x) = \frac{4}{x} + x$$

$$\Box f(x) = x + 4$$

Answer: Given the following program:

- 1. Choose a number: x.
- 2. Add 4 to the chosen number: x + 4.
- 3. Divide the result by the original chosen number: $\frac{x+4}{x}$.

Thus, the function is:

$$f(x) = \frac{x+4}{x}$$

A.3 WRITING FUNCTIONS: LEVEL 1

Ex 9: Consider the following calculation program:

- 1. Choose a number.
- 2. Subtract 5 from the chosen number.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) = \boxed{x - 5}$$

Answer: Given the following program:

- 1. Choose a number: x.
- 2. Subtract 5 from the chosen number: x 5.

Thus, the function is:

$$f(x) = x - 5$$

Ex 10: Consider the following calculation program:

- 1. Choose a number.
- 2. Multiply the chosen number by three.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) = \boxed{3x}$$

Answer: Given the following program:

- 1. Choose a number: x.
- 2. Multiply the chosen number by three: 3x.

Thus, the function is:

$$f(x) = 3x$$

Ex 11: Consider the following calculation program:

- 1. Choose a number.
- 2. Multiply the chosen number by five.
- 3. Subtract 2 from the result obtained.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) = \boxed{5x - 2}$$

Answer: Given the following program:

- 1. Choose a number: x.
- 2. Multiply the chosen number by five: 5x.
- 3. Subtract 2 from the result obtained: 5x 2.

Thus, the function is:

$$f(x) = 5x - 2$$

Ex 12: Consider the following calculation program:

- 1. Choose a number.
- 2. Multiply the chosen number by -2.
- 3. Add 5 to the result obtained.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) = \boxed{-2x + 5}$$

Answer: Given the following program:

- 1. Choose a number: x.
- 2. Multiply the chosen number by -2: -2x.
- 3. Add 5 to the result obtained: -2x + 5.

Thus, the function is:

$$f(x) = -2x + 5$$

A.4 WRITING FUNCTIONS: LEVEL 2

Ex 13: Consider the following calculation program:

- 1. Choose a number.
- 2. Multiply the chosen number by itself.
- 3. Subtract 1 from the result obtained.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) = \boxed{x^2 - 1}$$

Answer: Given the following program:

- 1. Choose a number: x.
- 2. Multiply the chosen number by itself: x^2 .

3. Subtract 1 from the result obtained: $x^2 - 1$.

Thus, the function is:

$$f(x) = x^2 - 1$$

Ex 14: Consider the following calculation program:

- 1. Choose a number.
- 2. Square the chosen number.
- 3. Multiply the result by 2.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) = 2x^2$$

Answer: Given the following program:

- 1. Choose a number: x.
- 2. Square the chosen number: x^2 .
- 3. Multiply the result by 2: $2x^2$.

Thus, the function is:

$$f(x) = 2x^2$$

Ex 15: Consider the following calculation program:

- 1. Choose a number.
- 2. Subtract 1 from the chosen number.
- 3. Multiply the result by the original number chosen.

Let x be the number chosen initially. Determine the function f that corresponds to the result obtained with this program.

$$f(x) = \boxed{(x-1)x}$$

Answer: Given the following program:

- 1. Choose a number: x.
- 2. Subtract 1 from the chosen number: x-1.
- 3. Multiply the result by the original number: (x-1)x.

Thus, the function is:

$$f(x) = (x - 1)x$$

A.5 CALCULATING f(x)

Ex 16: For f(x) = x + 3,

$$f(4) = 7$$

Ex 17: For f(x) = 2x - 1,

$$f(5) = 9$$

Answer:

$$f(5) = 2 \times (5) - 1 \quad \text{(substituting } x \text{ with } (5))$$
$$= 10 - 1$$
$$= 9$$

Ex 18: For
$$f(x) = 3x + 2$$
,

$$f(2) = 8$$

Answer:

$$f(2) = 3 \times (2) + 2 \quad \text{(substituting } x \text{ with } (2)\text{)}$$
$$= 6 + 2$$
$$= 8$$

Ex 19: For $f(x) = x^2 - 1$,

$$f(3) = 8$$

Answer:

$$f(3) = (3)^2 - 1 \quad \text{(substituting } x \text{ with } (3))$$
$$= 9 - 1$$
$$= 8$$

Ex 20: For f(x) = 5x - 3,

$$f(1) = 2$$

Answer:

$$f(1) = 5 \times (1) - 3$$
 (substituting x with (1))
= $5 - 3$
= 2

Ex 21: For $f(x) = \frac{x}{2} + 4$,

$$f(6) = 7$$

Answer:

$$f(6) = \frac{(6)}{2} + 4 \quad \text{(substituting } x \text{ with } (6)\text{)}$$

$$= 3 + 4$$

$$= 7$$

Ex 22: For f(x) = x - 5,

$$f(10) = 5$$

Answer:

$$f(10) = (10) - 5$$
 (substituting x with (10))
= 10 - 5
= 5

Ex 23: For f(x) = 2x - 5,

$$f(-2) = \boxed{-9}$$

Answer:

$$f(-2) = 2 \times (-2) - 5 \quad \text{(substituting } x \text{ with } (-2)\text{)}$$

= $-4 - 5$
= -9

Ex 24: For f(x) = -x + 4,

$$f(-3) = 7$$

Answer:

$$f(-3) = -(-3) + 4 \quad \text{(substituting } x \text{ with } (-3))$$
$$= 3 + 4$$
$$= 7$$

Ex 25: For f(x) = 3x - 7,

$$f(-1) = -10$$

Answer:

$$f(-1) = 3 \times (-1) - 7 \quad \text{(substituting } x \text{ with } (-1))$$
$$= -3 - 7$$
$$= -10$$

Ex 26: For $f(x) = x^2 - 2x$,

$$f(-2) = 8$$

Answer

$$f(-2) = (-2)^2 - 2 \times (-2)$$
 (substituting x with (-2))
= 4 + 4
= 8

Ex 27: For f(x) = 2x + 3,

$$f(-3) = -3$$

Answer:

$$f(-3) = 2 \times (-3) + 3 \quad \text{(substituting } x \text{ with } (-3)\text{)}$$
$$= -6 + 3$$
$$= -3$$

Ex 28: For $f(x) = \frac{x}{2} - 4$,

$$f(8) = 0$$

Answer:

$$f(8) = \frac{(8)}{2} - 4 \quad \text{(substituting } x \text{ with } (8)\text{)}$$
$$= 4 - 4$$
$$= 0$$

Ex 29: For $f(x) = \frac{3x-5}{2}$,

$$f(-1) = \boxed{-4}$$

Answer:

$$f(-1) = \frac{3 \times (-1) - 5}{2}$$
 (substituting x with (-1))
$$= \frac{-3 - 5}{2}$$

$$= \frac{-8}{2}$$

$$= -4$$

Ex 30: For
$$f(x) = \frac{x-6}{2} - 3$$
,

$$f(10) = \boxed{-1}$$

Answer:

$$f(10) = \frac{(10) - 6}{2} - 3 \quad \text{(substituting } x \text{ with } (10)\text{)}$$

$$= \frac{4}{2} - 3$$

$$= 2 - 3$$

$$= -1$$

A.6 CALCULATING f(x)

Ex 31: For $f : x \mapsto x + 3$,

$$f(4) = 7$$

Answer:

$$f(4) = (4) + 3 \quad \text{(substituting } x \text{ with } (4))$$
$$= 4 + 3$$
$$= 7$$

Ex 32: For $f: x \mapsto x^2 - 1$,

$$f(2) = 3$$

Answer:

$$f(2) = (2)^2 - 1 \quad \text{(substituting } x \text{ with } (2)\text{)}$$
$$= 4 - 1$$
$$= 3$$

Ex 33: For $f: x \mapsto (x-1)(x-2)$,

$$f(0) = 2$$

Answer:

$$f(0) = (0-1)(0-2) \quad \text{(substituting } x \text{ with } (0))$$
$$= (-1) \times (-2)$$
$$= 2$$

Ex 34: For $f: x \mapsto x^3$,

$$f(-1) = \boxed{-1}$$

Answer:

$$f(-1) = (-1)^3 \quad \text{(substituting } x \text{ with } (-1))$$

B TABLES OF VALUES

B.1 FINDING f(x)

Ex 35: The table of values is given below:

Answer: For x = 2, f(2) = 3.

Ex 36: The table of values is given below:

x	-3	-1	0	3	4
f(x)	5	3	0	1	4
	f(:	$(3) = \begin{bmatrix} 1 \end{bmatrix}$	1		

Answer: For x = 3, f(3) = 1.

Ex 37: The table of values is given below:

x	-4	-2	0	2	4
f(x)	2	1	-1	0	3
	f(0)	$(0) = \begin{bmatrix} 1 \end{bmatrix}$	-1		

Answer: For x = 0, f(0) = -1.

Ex 38: The table of values is given below:

x	-5	-2	0	3	5
f(x)	4	2	-1	0	6
	f((5) =	6		

Answer: For x = 5, f(5) = 6.

B.2 FILLING TABLES OF VALUES

Ex 39: For $f(x) = x^2$, fill in the table of values:

x	-2	-1	0	1	2
f(x)	4	1	0	1	4

Answer:

- $f(-2) = ((-2))^2$ (substituting x with (-2)) = 4
- $f(-1) = ((-1))^2$ (substituting x with (-1)) = 1
- $f(0) = (0)^2$ (substituting x with (0)) = 0
- $f(1) = (1)^2$ (substituting x with (1)) = 1
- $f(2) = (2)^2$ (substituting x with (2)) = 4

So the table of values is:

x	-2	-1	0	1	2
f(x)	4	1	0	1	4

Ex 40: For f(x) = -2x + 1, fill in the table:

x	-2	-1	0	1	2
f(x)	5	3	1	-1	-3

Answer:

•
$$f(-2) = -2 \times (-2) + 1$$
 (substituting x with (-2))
= $4 + 1$
= 5

• $f(-1) = -2 \times (-1) + 1$ (substituting x with (-1)) = 2 + 1=3

• $f(0) = -2 \times (0) + 1$ (substituting x with (0)) = 0 + 1= 1

•
$$f(1) = -2 \times (1) + 1$$
 (substituting x with (1))
= $-2 + 1$
= -1

•
$$f(2) = -2 \times (2) + 1$$
 (substituting x with (2))
= $-4 + 1$
= -3

So the table of values is:

x	-2	-1	0	1	2
f(x)	5	3	1	-1	-3

Ex 41: For $f(x) = x^2 - 3x + 1$, fill in the table:

а	;	-2	-1	0	1	2
f(x)	11	5	1	-1	-1

Answer:

•
$$f(-2) = ((-2))^2 - 3 \times (-2) + 1$$
 (substituting x with (-2))
= $4 + 6 + 1$
= 11

•
$$f(-1) = ((-1))^2 - 3 \times (-1) + 1$$
 (substituting x with (-1)) **C GRAPHS**

$$= 1 + 3 + 1$$

$$= 5$$

•
$$f(0) = (0)^2 - 3 \times (0) + 1$$
 (substituting x with (0))
= $0 + 0 + 1$
= 1

•
$$f(1) = (1)^2 - 3 \times (1) + 1$$
 (substituting x with (1))
= $1 - 3 + 1$
= -1

•
$$f(2) = (2)^2 - 3 \times (2) + 1$$
 (substituting x with (2))
= $4 - 6 + 1$
= -1

So the table of values is:

x	-2	-1	0	1	2
f(x)	11	5	1	-1	-1

B.3 FINDING x SUCH THAT f(x) = y

Ex 42: The table of values is given below:

x	-2	-1	0	1	2
f(x)	-1	0	1	2	3

Find x such that f(x) = 1.

$$x = \boxed{0}$$

Answer: As f(0) = 1, x = 0 is an antecedent of 1 by f.

Ex 43: The table of values is given below:

x	-3	-1	0	2	3
f(x)	4	2	1	-1	0

Find x such that f(x) = 4.

$$x = \boxed{-3}$$

Answer: As f(-3) = 4, x = -3 is an antecedent of 4 by f.

Ex 44: The table of values is given below:

x	-2	0	1	3	4
g(x)	3	0	1	2	-1

Find x such that g(x) = 2.

$$x = 3$$

Answer: As g(3) = 2, x = 3 is an antecedent of 2 by g.

Ex 45: The table of values is given below:

x	-3	-1	1	2	4
f(x)	0	2	0	3	2

Find x such that f(x) = 0.

Give your answers in increasing order:

$$x = \boxed{-3}, \boxed{1}$$

Answer: As f(-3) = 0 and f(1) = 0, the antecedents of 0 by f are x = -3 and x = 1.

C.1 PLOTTING LINE GRAPHS

Ex 46: Here is a table of values for the function f(x) = x - 1:

x	-2	-1	0	1	2	3
f(x)	-3	-2	-1	0	1	2

Plot the line graph of f.

Answer: Plot the points (-2, -3), (-1, -2), (0, -1), (1, 0), (2, 1), and (3,2). Then, connect the points with straight segments to form the line graph.

Ex 47: Here is a table of values for the function $f(x) = x^2$:

x	-2	-1	-0.5	0	0.5	1	2
f(x)	4	1	0.25	0	0.25	1	4

Plot the line graph of f.

Answer: Plot the points (-2,4), (-1,1), (-0.5,0.25), (0,0), (0.5,0.25), (1,1), and (2,4). Then, connect the points with straight segments.

Ex 48: Here is a table of values for the function f(x) = -2x + 1:

x	-2	-1	0	1	2
f(x)	5	3	1	-1	-3

Plot the line graph of f.

Answer: Plot the points (-2,5), (-1,3), (0,1), (1,-1), (2,-3). Then, connect the points with straight segments to form the line graph.

Ex 49: Here is a table of values for the function f(x) = 0.5x - 1:

x	-3	-2	-1	0	1	2	3
f(x)	-2.5	-2	-1.5	-1	-0.5	0	0.5

Plot the line graph of f.

Answer: Plot the points (-3, -2.5), (-2, -2), (-1, -1.5), (0, -1), (1, -0.5), (2, 0), (3, 0.5). Then, connect the points with straight **Ex 51:** The graph of y = f(x) is: segments to form the line graph.

$\ \, \hbox{D READING VALUES AND SOLVING} \,\, f(x) = y$ ON A GRAPH

 $f(1) = \boxed{-1}$

D.1 FINDING f(x)

Answer:

Ex 50: The graph of y = f(x) is:

f(2) = 3

Ex 52: The graph of y = f(x) is:

$$f(-2) = \boxed{1}$$

Answer:

Ex 53: The graph of y = f(x) is:

$$f(1) = \boxed{0}$$

Ex 54: The graph of y = f(x) is:

$$f(1) = -2$$

Answer:

D.2 FINDING x SUCH THAT f(x) = y

Ex 55: The graph of y = f(x) is:

Find x such that f(x) = -2.

$$x = \boxed{1}$$

Answer:

• Draw a horizontal line at y = -2.

• Identify the intersection point with the curve.

Ex 56: The graph of y = f(x) is:

Find x such that f(x) = 2.

$$x = \boxed{-1}$$

Answer:

• Draw a horizontal line at y = 2.

• Identify the intersection point with the curve.

Ex 57: The graph of y = f(x) is:

Find all x such that f(x) = 3.

Give your answers in increasing order:

$$x = \boxed{-2}$$
 or $x = \boxed{2}$

Answer:

• Draw a horizontal line at y = 3.

• Identify the intersection points with the curve.

Ex 58: The graph of y = f(x) is:

Find x such that f(x) = 1.

$$x = \boxed{-2}$$

Answer:

• Draw a horizontal line at y = 1.

• Identify the intersection point with the curve.

E SOLVING f(x) = y ALGEBRAICALLY

E.1 SOLVING LINEAR EQUATIONS FOR f(x) = y

Ex 59: Let f(x) = 3x + 12. Find all x such that f(x) = 0. Justify your answer.

Answer: We solve the equation:

$$f(x) = 0$$

 $3x + 12 = 0$
 $3x = -12$ (subtract 12 from both sides)
 $x = -4$ (divide both sides by 3)

So the solution is x = -4.

(Optional) We can check this by calculating f(-4):

$$f(-4) = 3 \times (-4) + 12$$
$$= -12 + 12$$
$$= 0$$

Ex 60: Let f(x) = 2x - 18. Find all x such that f(x) = 0. Justify your answer.

Answer: We solve the equation:

$$f(x) = 0$$

$$2x - 18 = 0$$

$$2x - 18 + 18 = 0 + 18 \quad \text{(add 18 to both sides)}$$

$$2x = 18$$

$$\frac{2x}{2} = \frac{18}{2} \quad \text{(divide both sides by 2)}$$

$$x = 9$$

So the solution is x = 9.(Optional) We can check this by calculating f(9):

$$f(9) = 2 \times 9 - 18$$

= 18 - 18
= 0

Ex 61: Let f(x) = 2x + 20. Find all x such that f(x) = 10. Justify your answer.

Answer: We solve the equation:

$$f(x) = 10$$

$$2x + 20 = 10$$

$$2x + 20 - 20 = 10 - 20$$
 (subtract 20 from both sides)
$$2x = -10$$

$$\frac{2x}{2} = \frac{-10}{2}$$
 (divide both sides by 2)
$$x = -5$$

So the solution is x = -5. (Optional) We can check this by calculating f(-5):

$$f(-5) = 2 \times (-5) + 20$$
$$= -10 + 20$$
$$= 10$$

Ex 62: Let f(x) = -6x + 7. Find all x such that f(x) = 2. Justify your answer.

Answer: We solve the equation:

$$f(x) = 2$$

$$-6x + 7 = 2$$

$$-6x + 7 - 7 = 2 - 7 \quad \text{(subtract 7 from both sides)}$$

$$-6x = -5$$

$$\frac{-6x}{-6} = \frac{-5}{-6} \quad \text{(divide both sides by } -6\text{)}$$

$$x = \frac{5}{6}$$

So the solution is $x = \frac{5}{6}$. (Optional) We can check this by calculating $f\left(\frac{5}{6}\right)$:

$$f\left(\frac{5}{6}\right) = -6 \times \frac{5}{6} + 7$$
$$= -5 + 7$$
$$= 2$$