

A GENERAL PRINCIPLES OF POLYNOMIAL GRAPHS

A.1 DETERMINING END BEHAVIOUR

Ex 1: For the polynomial $P(x) = -3x^5 + 4x^2 - 8x + 1$, determine the following limits:

1. $\lim_{x \rightarrow \infty} P(x) = \begin{array}{l} \square +\infty \\ \square -\infty \end{array}$

2. $\lim_{x \rightarrow -\infty} P(x) = \begin{array}{l} \square +\infty \\ \square -\infty \end{array}$

Ex 2: For the polynomial $P(x) = 2x^4 - 5x^3 + x - 10$, determine the following limits:

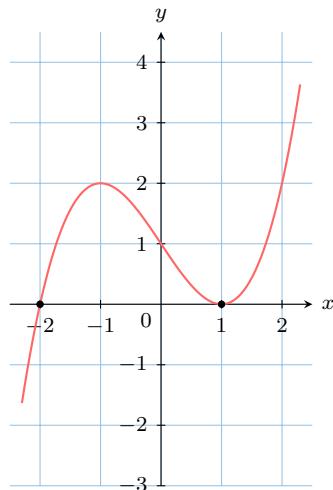
1. $\lim_{x \rightarrow \infty} P(x) = \begin{array}{l} \square +\infty \\ \square -\infty \end{array}$

2. $\lim_{x \rightarrow -\infty} P(x) = \begin{array}{l} \square +\infty \\ \square -\infty \end{array}$

Ex 3: For the polynomial $P(x) = x^7 + 100x^6 - 500x^2$, determine the following limits:

1. $\lim_{x \rightarrow \infty} P(x) = \begin{array}{l} \square +\infty \\ \square -\infty \end{array}$

2. $\lim_{x \rightarrow -\infty} P(x) = \begin{array}{l} \square +\infty \\ \square -\infty \end{array}$

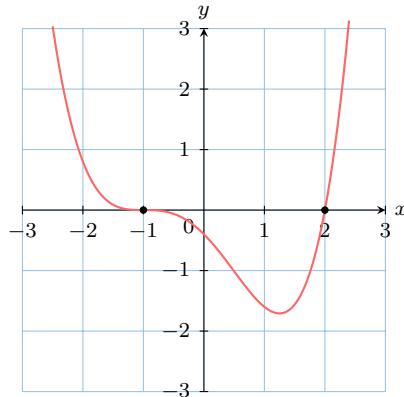

Ex 4: For the polynomial $P(x) = 50 + x - 2x^6$, determine the following limits:

1. $\lim_{x \rightarrow \infty} P(x) = \begin{array}{l} \square +\infty \\ \square -\infty \end{array}$

2. $\lim_{x \rightarrow -\infty} P(x) = \begin{array}{l} \square +\infty \\ \square -\infty \end{array}$

A.2 INTERPRETING GRAPHS AT THE ROOTS

MCQ 5: The graph of a polynomial $P(x)$ is shown below. Which of the following is the most likely factorisation of $P(x)$?

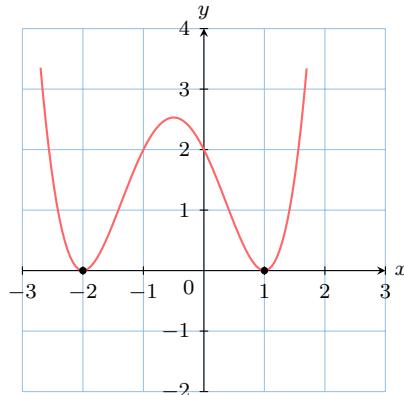

$(x + 2)(x - 1)$

$(x + 2)^2(x - 1)$

$(x + 2)(x - 1)^2$

$(x + 2)^3(x - 1)$

MCQ 6: The graph of a polynomial $P(x)$ is shown below. Which of the following is the most likely factorisation of $P(x)$?

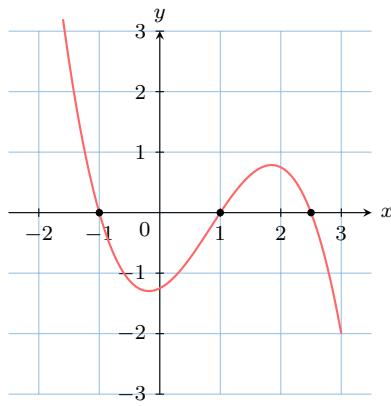

$(x + 1)(x - 2)$

$(x + 1)^2(x - 2)$

$(x + 1)(x - 2)^3$

$(x + 1)^3(x - 2)$

MCQ 7: The graph of a polynomial $P(x)$ is shown below. Which of the following is the most likely factorisation of $P(x)$?


$(x + 2)(x - 1)$

$(x - 2)(x + 1)^2$

$(x + 2)^2(x - 1)^2$

$(x + 2)^3(x - 1)$

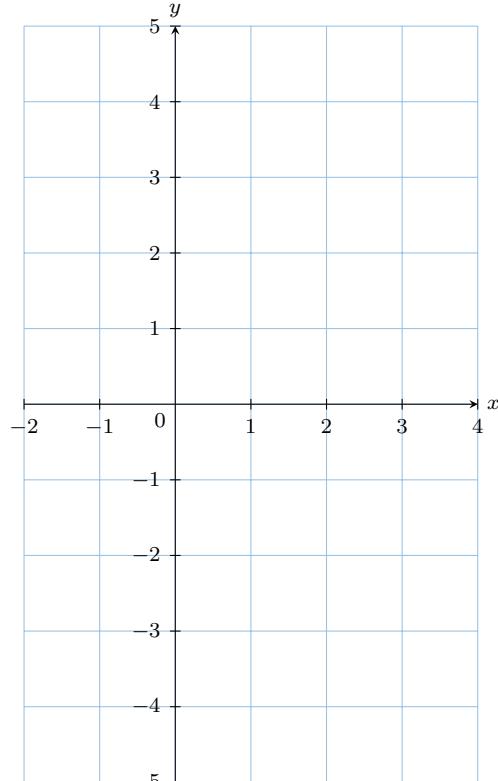
MCQ 8: The graph of a polynomial $P(x)$ is shown below. Which of the following is the most likely factorisation of $P(x)$?

$(x + 1)(x - 1)(x - 2.5)$

$-(x + 1)(x - 1)(x - 2.5)$

$-(x - 1)(x + 1)^2$

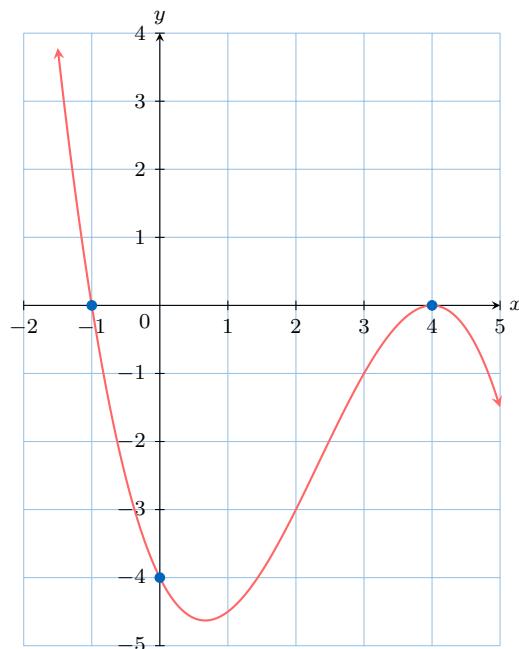
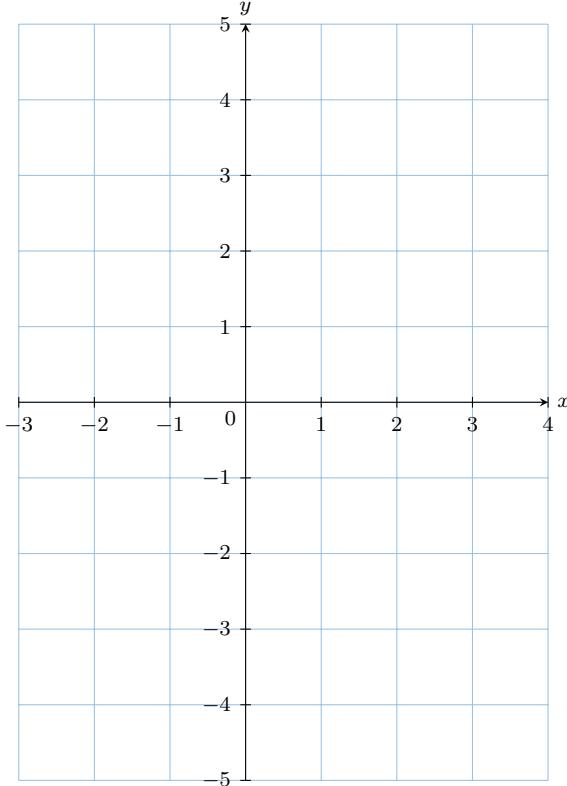
$(x + 1)(x - 1)(x - 2.5)^2$


A.3 INTERPRETING GRAPHS AT THE ROOTS

Ex 9: A polynomial function is given by $P(x) = (x - 1)^3(x - 2)$. Describe the behaviour of the graph of $y = P(x)$ at its x-intercepts.

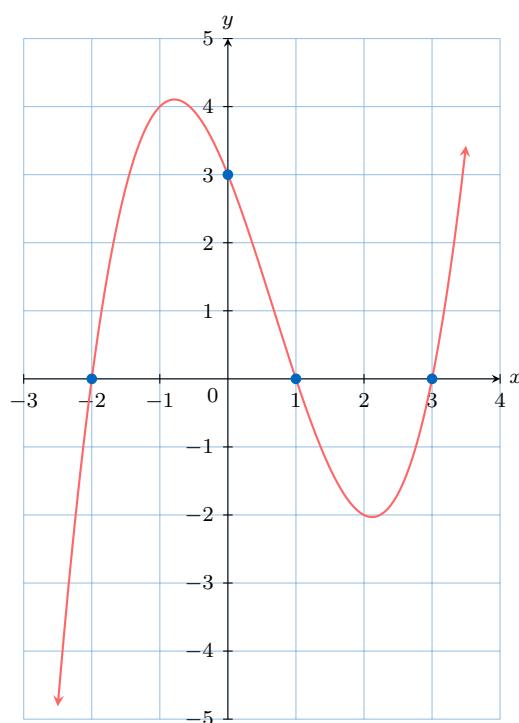
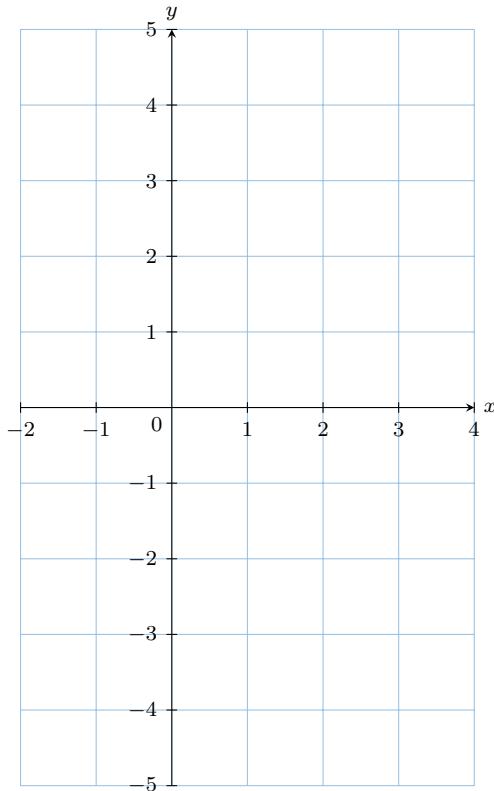
B GRAPHING CUBIC FUNCTIONS

B.1 SKETCHING CUBIC FUNCTIONS



Ex 12: Use the axes intercepts to sketch the graph of $y = (x + 1)(x - 1)(x - 3)$.

Ex 10: A polynomial function is given by $P(x) = (x + 3)^2(x - 4)$. Describe the behaviour of the graph of $y = P(x)$ at its x-intercepts.

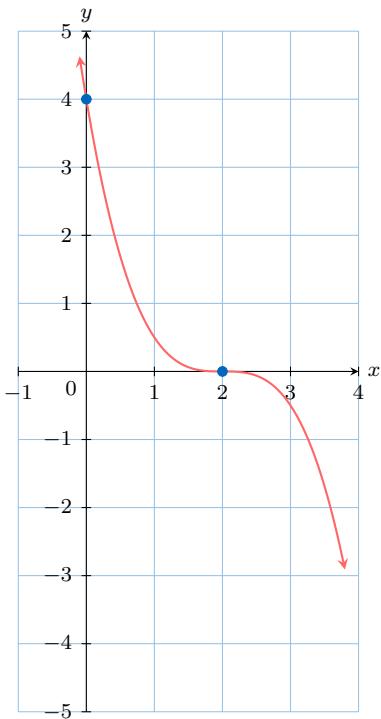
Ex 11: A polynomial function is given by $P(x) = x(x - 5)^2(x + 1)^3$. Describe the behaviour of the graph of $y = P(x)$ at its x-intercepts.



Ex 13: Use the axes intercepts to sketch the graph of $y = -\frac{1}{2}(x + 1)^2(x - 3)$.

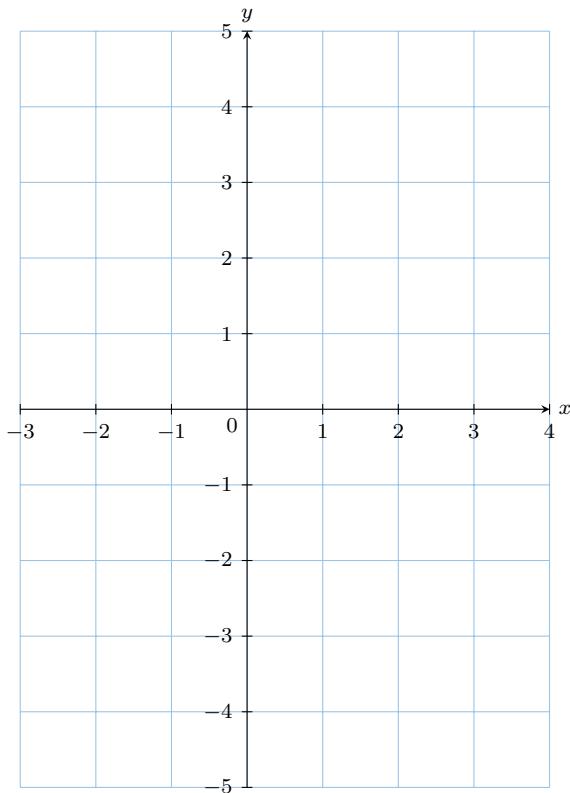
$$P(x) = \boxed{\quad}$$

Ex 14: Use the axes intercepts to sketch the graph of $y = \frac{1}{2}(x - 1)^3$.

Ex 16: Find the equation of the cubic function shown in the graph below.

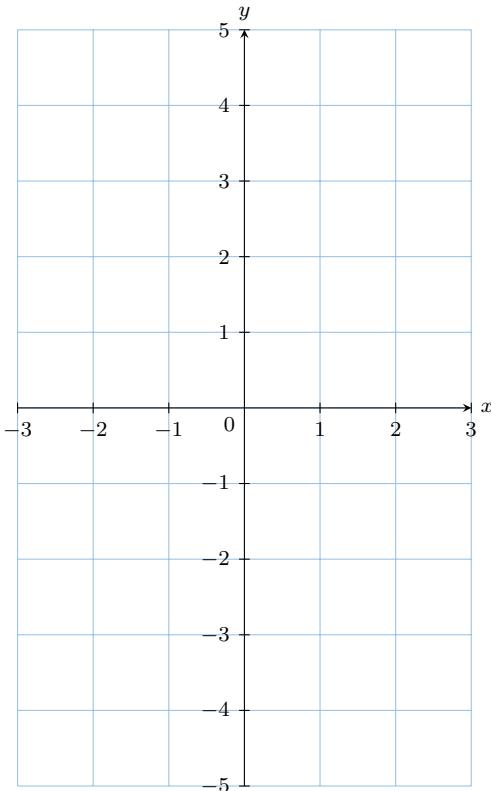


$$P(x) = \boxed{\quad}$$

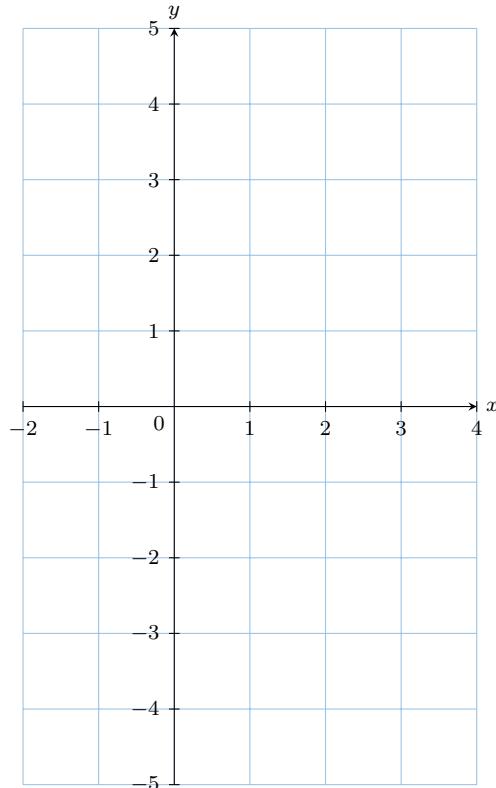

B.2 FINDING THE FUNCTION FROM A GRAPH

Ex 15: Find the equation of the cubic function shown in the graph below.

Ex 17: Find the equation of the cubic function shown in the graph below.


$$P(x) = \boxed{\quad}$$

C GRAPHING QUARTIC FUNCTIONS


C.1 SKETCHING QUARTIC FUNCTIONS

Ex 18: Use the axes intercepts to sketch the graph of $y = (x + 2)(x + 1)(x - 1)(x - 2)$.

Ex 19: Use the axes intercepts to sketch the graph of $y = -\frac{1}{4}(x + 2)^2(x - 1)(x - 3)$.

Ex 20: Use the axes intercepts to sketch the graph of $y = \frac{1}{8}(x - 2)^3(x + 1)$.

D SOLVING POLYNOMIAL INEQUALITIES

D.1 SOLVING POLYNOMIAL INEQUALITIES

MCQ 21: Which of the following is the solution to the inequality $(x - 4)^2(x + 1) \leq 0$?

$x \leq -1$

$x \leq -1$ or $x \geq 4$

$x \leq -1$ or $x = 4$

$-1 \leq x \leq 4$

MCQ 22: Which of the following is the solution to the inequality $(x+3)(x-1)^3 \geq 0$?

$-3 \leq x \leq 1$

$x \leq -3$

$x \geq 1$

$x \leq -3$ or $x \geq 1$

MCQ 23: Which of the following is the solution to the inequality $(x+3)(x-1)^3 \geq 0$?

$-3 \leq x \leq 1$

$x \leq -3$

$x \geq 1$

$x \leq -3$ or $x \geq 1$

MCQ 24: Which of the following is the solution to the inequality $x^3 + 2x^2 < 3x$?

$x < -3$ or $x > 1$

$x < -3$ or $0 < x < 1$

$-3 < x < 0$

$-3 < x < 0$ or $x > 1$

Ex 25: Find the set of values for which $(x+2)(x-1)(x-3) < 0$.

D.2 SOLVING POLYNOMIAL AND RATIONAL INEQUALITIES

Ex 27: Consider the inequality $\frac{x-4}{2x+1} \geq 1$.

1. Rewrite the inequality in the form $f(x) \geq 0$, where $f(x)$ is a single rational expression.
2. Find the critical values for the inequality.
3. Hence, solve the inequality $\frac{x-4}{2x+1} \geq 1$.

Ex 26: Find the set of values for which $x^2 - 3x + 2 > 0$.

Ex 28: Solve the inequality $x \leq \frac{3}{x-2}$.

1. Rewrite the inequality in the form $f(x) \leq 0$, where $f(x)$ is a single rational expression.
2. Find the critical values for the inequality.
3. Hence, solve the inequality $x \leq \frac{3}{x-2}$.

1. Show that $(x - 1)$ is a factor of $P(x)$.
2. Hence, fully factorize $P(x)$.
3. Using the factors of $P(x)$, solve the inequality $x^3 - 2x^2 - 5x + 6 > 0$.

Ex 29: Solve the inequality $\frac{2}{x+3} < \frac{1}{x-2}$.

1. Rewrite the inequality in the form $f(x) < 0$, where $f(x)$ is a single rational expression.
2. Find the critical values for the inequality.
3. Hence, solve the inequality $\frac{2}{x+3} < \frac{1}{x-2}$.

Ex 30: Let $P(x) = x^3 - 2x^2 - 5x + 6$.