FUNCTIONS AND GRAPHS OF POLYNOMIALS

A GENERAL PRINCIPLES OF POLYNOMIAL
GRAPHS

A.1 DETERMINING END BEHAVIOUR

Ex 1: For the polynomial P(z) = —3x°+42? —8x+1, determine
the following limits:
1. lim P(x

Jim,
2. lim P(z :

T—r—00

Answer: To determine the end behaviour, we factor out the leading
term, —3x°, from the polynomial:

P(z) = —32° + 42 — 8z + 1
42 8w 1
= 3t (1o 2 2
v ( 3x5+3x5 3x5>
4 8 1
SN P S
v ( 3m3+3x4 3.1'5>

As © — oo, all the fractional terms inside the parentheses
approach 0. This means the entire expression in the parentheses
approaches 1.

Therefore, for very large values of |z|, the behaviour of P(z) is
determined by the behaviour of its leading term, —3x°.

The degree is n = 5 (odd) and the leading coefficient is a,, = —3
(negative).

1. As x — oo, an odd power of a large positive number is
positive, but it is multiplied by a negative coefficient. Thus,
P(z) —» —c0.

2. As ¢ — —o0, an odd power of a large negative number is
negative. Multiplying by a negative coefficient (—3) makes
the result positive. Thus, P(z) — oo.

The graph runs from top-left to bottom-right.

Ex 2: For the polynomial P(z) = 22* — 52 + 2 — 10, determine
the following limits:
1. lim P(x

Jim,
2. lim P(z :

T—r—00

Answer: To determine the end behaviour, we factor out the leading
term, 2x*:

P(z) = 2z* —52% 4 2 — 10
ST T 10
_ o4
=2 (1‘2m4+2x4‘2x4>

5 1 5
— 9.4 s - 2
=2 <1 2x+2x3 m4>

As x — oo, all the fractional terms inside the parentheses
approach 0. This means the entire expression in the parentheses
approaches 1.

Therefore, for very large values of |z|, the behaviour of P(z) is
determined by the behaviour of its leading term, 2x%.

The degree is n = 4 (even) and the leading coefficient is a,, = 2
(positive).

1. As © — oo, an even power of a large positive number
is positive. Multiplying by a positive coefficient keeps it
positive. Thus, P(z) — oo.

2. As ¢ — —o0, an even power of a large negative number
is positive. Multiplying by a positive coefficient keeps it
positive. Thus, P(z) — 0.

The graph opens upwards, running from top-left to top-right.
Ex 3: For the polynomial P(z) = 27+ 1002
the following limits:

1. lim P(x

i,
2 lim_P() :

Answer: To determine the end behaviour, we factor out the leading

term, 27

—50022, determine

2" 4 1002° — 5002
- 10025 50022
(14— — —=
x x
100 500
=z’ (1 _— 5)

x x
As © — +oo, all the fractional terms inside the parentheses
approach 0. This means the entire expression in the parentheses
approaches 1.
Therefore, for very large values of |z|, the behaviour of P(z) is
determined by the behaviour of its leading term, 7.
The degree is n = 7 (odd) and the leading coefficient is a,, = 1
(positive).

P(z)

1. As x — oo, an odd power of a large positive number is
positive. Thus, P(z) — co.

2. As ¢ — —o0, an odd power of a large negative number is
negative. Thus, P(z) — —oo.

The graph runs from bottom-left to top-right.

Ex 4: For the polynomial P(x) = 50 + x — 225, determine the
following limits:

1. wll)rr;oP :
2. lim P(z) =[-oc]

Answer: First, we write the polynomial in standard form: P(z) =
—225 + 2 + 50. To determine the end behaviour, we factor out
the leading term, —2x5:

P(z) = =225 + = + 50

T 50
—oxb (1 - 2
x( 226 2x6>
1 25

_ 6
=% <1zxsx6)

As x — =+oo, all the fractional terms inside the parentheses
approach 0. This means the entire expression in the parentheses
approaches 1.

Therefore, for very large values of |z|, the behaviour of P(z) is
determined by the behaviour of its leading term, —2x%.

The degree is n = 6 (even) and the leading coefficient is a,, = —2
(negative).



1. As x — oo, an even power of a large positive number is
positive. Multiplying by a negative coefficient makes it
negative. Thus, P(z) — —oo.

2. As x — —oo, an even power of a large negative number
is positive. Multiplying by a negative coefficient makes it
negative. Thus, P(z) — —oo.

The graph opens downwards, running from bottom-left to
bottom-right.

A.2 INTERPRETING GRAPHS AT THE ROOTS

MCQ 5: The graph of a polynomial P(z) is shown below.
Which of the following is the most likely factorisation of P(x)?
Yy
pul
31
91
1)
42 -1 O 1 2
1l
ol
3l
O (x+2)(xz—1)
O (z+2)2%x-1)
X (x+2)(z—1)2
O (z+2)3@x—1)
Answer: The graph has two x-intercepts (roots) at x = —2 and
=1

e At xz = —2, the graph cuts the axis, which implies the factor
(z + 2) has an odd multiplicity (likely 1 or 3).

e At x = 1, the graph touches the axis, which implies the
factor (z — 1) has an even multiplicity (likely 2).

Combining these observations, the most likely factorisation is
P(x) = a(x + 2)(x — 1)? for some constant a.

MCQ 6: The graph of a polynomial P(z) is shown below.
Which of the following is the most likely factorisation of P(x)?

Y
3%
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Answer: The graph has two x-intercepts at © = —1 and x = 2.

e At x = —1, the graph has a point of inflection with a
horizontal tangent, which implies the factor (z + 1) has a
multiplicity of 3.

e At xz = 2, the graph cuts the axis, which implies the factor
(z — 2) has a multiplicity of 1.

Combining these observations, the most likely factorisation is
P(x) = a(x + 1)3(x — 2) for some constant a.

MCQ 7: The graph of a polynomial P(z) is shown below.
Which of the following is the most likely factorisation of P(x)?
Y
4 5
3 +

2 |
1 +
- - | T
-3 -2 -1 0 1 2 3
—14
—o 1
O (r+2)(x—1)
O (z—2)(x+1)?
K (z+2)%(z — 1)
O (z+2)3x—1)
Answer: The graph has two x-intercepts at * = —2 and x = 1.

e At x = —2, the graph touches the axis, which implies the
factor (z 4 2) has an even multiplicity (likely 2).

e At x = 1, the graph also touches the axis, which implies
the factor (z — 1) has an even multiplicity (likely 2).

Combining these observations, the most likely factorisation is
P(z) = a(x + 2)?(x — 1)? for some constant a.

MCQ 8: The graph of a polynomial P(z) is shown below.
Which of the following is the most likely factorisation of P(z)?

Y
3%
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O (z+1)(z — 1)(z — 2.5)
K —(z 4+ 1)(z — 1)(z — 2.5)
O —(z — 1)(z + 1)2

O (z+1)(z — 1)(z — 2.5)2

Answer: The graph has three x-intercepts at x = —1,z = 1, and
T =2.5.

e At each root, the graph cuts the axis, which implies that
each corresponding factor, (z + 1), (x — 1), and (z — 2.5),
has a multiplicity of 1.

e We also observe the end behaviour. As x — oo, y — —o0.
This indicates a negative leading coefficient.

Combining these observations, the most likely factorisation is
P(z) = a(z+1)(x — 1)(x — 2.5) where a < 0. Option B matches
this form.

A.3 INTERPRETING GRAPHS AT THE ROOTS

Ex 9: A polynomial function is given by P(x) = (z — 1)%(z —
2). Describe the behaviour of the graph of y = P(x) at its x-
intercepts.

Answer: The roots of the polynomial are at x =1 and = = 2.

e The root = 1 comes from the factor (z — 1)2, which has
a multiplicity of 3. Therefore, the graph has a point of
horizontal inflection on the x-axis at x = 1.

e The root = 2 comes from the factor (z — 2)!, which has
a multiplicity of 1. Therefore, the graph cuts the x-axis at
T =2.

Ex 10: A polynomial function is given by P(x) = (z + 3)*(z —
4). Describe the behaviour of the graph of y = P(z) at its x-
intercepts.

Answer: The roots of the polynomial are at x = —3 and z = 4.

e The root z = —3 comes from the factor (z + 3)?, which has
a multiplicity of 2. Therefore, the graph touches the x-axis
at x = —3.

e The root z = 4 comes from the factor (x — 4)!, which has
a multiplicity of 1. Therefore, the graph cuts the x-axis at
r =4

Ex 11: A polynomial function is given by P(x) = z(z —5)%(z +
1)3. Describe the behaviour of the graph of y = P(x) at its
x-intercepts.

Answer: The roots of the polynomial are at * = 0, x = 5, and
r=—1.

e The root * = 0 comes from the factor 2!, which has a
multiplicity of 1. Therefore, the graph cuts the x-axis at
the origin.

e The root z = 5 comes from the factor (z —5)2, which has a
multiplicity of 2. Therefore, the graph touches the x-axis

at x = 5.

e The root 2 = —1 comes from the factor (x + 1)3, which has
a multiplicity of 3. Therefore, the graph has a point of
horizontal inflection on the x-axis at x = —1.
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B GRAPHING CUBIC FUNCTIONS

B.1 SKETCHING CUBIC FUNCTIONS

Ex 12: Use the axes intercepts to sketch the graph of y =
(x4 1)(z—1)(z - 3).

Answer:

1. Roots: The polynomial is fully factored with three distinct
real roots. The graph cuts the x-axis at z = —1,z = 1, and
T =3.

2. y-intercept: When = =
y-intercept is (0, 3).

0,y = (1)(~1)(=3) = 3. The

3. End Behaviour: The leading term is (z)(z)(x) = 3. The
degree is odd and the leading coeflicient is positive. Thus,
as & — 00,y — 0o and as £ — —00, Yy —» —00.

4. Sketch:
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Y 3. End Behaviour: The leading term is —3(2?)(z) = —3a3.

5 2
The degree is odd and the leading coefficient is negative.
Thus, as * — 00,y — —oo and as z — —00,y — 0.
4 4+
4. Sketch:
: : | x
-2 1 2 4
—1
=27 } | T
-3 4
—31 1
—4 o]
51 3l
Ex 13: Use the axes intercepts to sketch the graph of y = —4 T
—i(z+1)*(z - 3).
Y o
5 —_
Ex 14: Use the axes intercepts to sketch the graph of y =
4+ %(m —1)3.
Y
31 57
2+ T
14 37
| 27
-3 -2 -1 0 1 2 3 4
—14 T
| T
—2 —2 -1 0 1 2 3 4
34 —11
—4 —27
541 =37
44
Answer:
1. Roots: The polynomial is factored. There is a repeated root —54
at = —1 (from the (z + 1)? term), so the graph touches
the x-axis at this point. There is a single root at £ = 3, S0 4, 5wer

the graph cuts the x-axis at this point. ) o
1. Roots: The polynomial has a root of multiplicity 3 at = =

2. y-intercept: When z = 0, y = ,%(0 + 1)2(0 - 3) = 1. This means the graph cuts the x-axis at + = 1 with a
1.5).

—1(1)(—3) = 2. The y-intercept is (0, stationary point of inflection.
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2. y-intercept: When z =0, y = $(0 — 1) = 1(-1) = —
The y-intercept is (0, —0.5).

N

11'3.

3. End Behaviour: The leading term is 5 The degree is
odd and the leading coefficient is positive. Thus, as =z —

o0,y — o0 and as x — —00, Yy — —00.

4. Sketch:

B.2 FINDING THE FUNCTION FROM A GRAPH

Ex 15: Find the equation of the cubic function shown in the
graph below.

P(x) =| —1/4(z + 1)(x — 4)?

Answer:

Www.commeunjeu.com 5

1. Identify the roots from the graph:

e The graph cuts the x-axis at * = —1. This corresponds
to a single root, giving a factor of (z — (—1)) = (x +1).

e The graph touches the x-axis at x = 4. This indicates
a repeated root of even multiplicity. For a cubic
function, this must be a root of multiplicity 2, giving a
factor of (x —4)2.

2. Write the general equation of the function: Based on
the roots, the equation of the cubic function can be written
in the form: y = a(x + 1)(x — 4)2, where a is a constant.

3. Use the y-intercept to find the value of a: The graph
passes through the point (0,—4). Substitute z = 0 and

y = —4 into the equation:
—4=a(0+1)(0—4)2
—1 = a(1)(~4)?
—4 = a(16)
—4
“T 16
1
T

4. Write the final equation: Substituting the value of a back
into the general equation, we get: y = —1(z + 1)(z — 4)2

Ex 16: Find the equation of the cubic function shown in the
graph below.

|

w

|

[N}

|

—
=)
—
)
[eepy 2
S

P(z) = \ 1/2(z +2)(z — 1)(z 73)\

Answer:

1. Identify the roots from the graph:

e The graph cuts the x-axisat t = —2, x = 1, and x = 3.
These are all single roots.

e The corresponding factors are (z + 2), (z — 1), and
(x —3).
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2. Write the general equation of the function: Based on into the equation:

the roots, the equation of the cubic function can be written 4=a(0—2)
in the form: y = a(x+2)(z—1)(x—3), where a is a constant. 4= a(-8)
= al—
3. Use the y-intercept to find the value of a: The graph _ 4
passes through the point (0,3). Substitute z =0 and y = 3 “= 3
into the equation: 1
a=—=
2
3=a(04+2)(0—-1)(0-3)
3=a(2)(-1)(-3) 4. Write the final equation: Substituting the value of a back
3 =a(6) into the general equation, we get: y = —3(z — 2)*
3
a=2
6
1
a=3 C GRAPHING QUARTIC FUNCTIONS

4. Write the final equation: Substituting the value of a back C.1 SKETCHING QUARTIC FUNCTIONS
into the general equation, we get: y = 2(z+2)(z—1)(z—3)

Ex 18: Use the axes intercepts to sketch the graph of y =
Ex 17: Find the equation of the cubic function shown in the (z+2)(z+1)(z —1)(z —2).
graph below.

Yy 5
5%
49 4
3 31
2 2 4
14 -
L 2 + > T
1 0 1 2 3 4 I } } } } N
-3 -2 -1 0 1 2 3
—1
—1 4
—92 1
24
—3 14
—34
—4 +
—4 4
51
_5_

Answer: Answer:

L. Identify the roots from the graph: 1. Roots: The polynomial is fully factored with four distinct

real roots. The graph cuts the x-axis at © = -2,z =

e The graph cuts the x-axis at x = 2 with a stationary 1 r=1 andz—2

point of inflection. This indicates a root of

multiplicity 3. X
2. y-intercept: When =z = 0, y = (2)(1)(—1)(—2) = 4. The
e The corresponding factor is (z — 2)3. y-intercept is (0,4).

2. Write the general equation of the function: Based on
the root, the equation of the cubic function can be written
in the form: y = a(x — 2)3, where a is a constant.

3. End Behaviour: The leading term is (z)(z)(z)(z) = z*.
The degree is even and the leading coefficient is positive.
Thus, as * — 00,y — 0o and as ¢ — —00,y — 0.

3. Use the y-intercept to find the value of a: The graph
passes through the point (0,4). Substitute z =0 and y =4 4. Sketch:

Www.commeunjeu.com 6
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3. End Behaviour: The leading term is —1(2?)(z)(z) =
—im‘l. The degree is even and the leading coefficient is

negative. Thus, as ¢ — oo,y — —oo0 and as ¢ — —o0,y —

—00.
4. Sketch:

Y

5 —_

4 +

3 +

2 +

1 +

Ex 19: Use the axes intercepts to sketch the graph of y =
—1(@+2)>2(x—1)(z-3).

Y
5 —_
4 +
Ex 20: Use the axes intercepts to sketch the graph of y =
31 sl =27 +1).
Y
21 52
1 4+
T 3T
-3 -2 -1 0 1 2 3 4
—1 2
—24 1
34 ; T
-2 -1 0 1 2 3 4
—44 —1
—51 —2
Answer: —3—
1. Roots: The polynomial is factored. There is a repeated
root at & = —2 (multiplicity 2), so the graph touches the —4
x-axis at this point. There are single roots at x = 1 and
x = 3, where the graph cuts the x-axis. -5+

2. y-intercept: When z =0, y = —(0+2)2(0 — 1)(0 — 3) =
—1(4)(—1)(—3) = —3. The y-intercept is (0, —3). Answer:

Www.commeunjeu.com 7
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1. Roots: The polynomial has a root of multiplicity 3 at =z =
2. This means the graph cuts the x-axis at z = 2 with a
stationary point of inflection. There is a single root at
x = —1, where the graph cuts the x-axis.

2. y-intercept: When 2 = 0, y $(0-2B30+1) =

£(—8)(1) = —1. The y-intercept is (0, —1).

3. End Behaviour: The leading term is §(2%)(z) = ta*. The
degree is even and the leading coefficient is positive. Thus,
as £ — 00,y — 00 and as x — —00, Yy — 00.

4. Sketch:

D SOLVING POLYNOMIAL INEQUALITIES

D.1 SOLVING POLYNOMIAL INEQUALITIES

MCQ 21: Which of the following is the solution to the
inequality (z —4)%(z +1) <07

Ox< -1
Hx<—-lorx>4
Xrx<—-lorx=4

O -1<z<4

Answer: Let P(x) = (x — 4)%(x + 1). The roots are at © = 4
(multiplicity 2) and = —1 (multiplicity 1).

e Method 1: Sign Diagram
We mark the roots on a number line. Because of the squared
term (z — 4)2, the sign of P(x) does not change at x = 4.
The sign is determined by the linear factor (z + 1).

- -1 +

4 +
|
\ \

T
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e Method 2: Table of Signs
We analyze the sign of each factor. Note that (z — 4)? is
always non-negative.

T —00 -1 4 +00
(z —4)? + + 0 +
z+1 - 0 + +
P(x) - 0 4+ 0 +

Conclusion:

We are looking for where P(z) < 0.

The sign diagrams show that P(z) is negative for x < —1.

The polynomial is equal to zero at its roots, x = —1 and x = 4.
Combining these conditions (P(x) < 0 or P(z) = 0), the solution
isx< —1lorx=4.

MCQ 22: Which of the following is the solution to the
inequality (z + 3)(z — 1)3 > 07

0 -3<zx<1

Ozr<-3

Oz>1

Xrx<—-3orx>1

Answer: Let P(z) = (z + 3)(x — 1)3. The roots are at = —3
(multiplicity 1) and x = 1 (multiplicity 3).
e Method 1: Sign Diagram
We mark the roots on a number line. Since both factors have
odd multiplicity, the sign of P(x) will change at both roots.
We can test a value, for instance z = 2: (2+3)(2 —1)% =
(5)(1)% > 0.

+ -3 - 1 +

| | A
\ \ 4

e Method 2: Table of Signs
We analyze the sign of each factor. The sign of (z — 1)3 is
the same as the sign of (z — 1).

T —00 -3 1 +o00
x+3 - 0 + +
(z—1)3 — - 0 +
P(x) + 0 - 0 +

Conclusion:

We are looking for where P(z) > 0.

The sign diagrams show that P(z) is positive for < —3 and for
x> 1

The polynomial is equal to zero at its roots, x = —3 and x = 1.
Combining these conditions (P(x) > 0 or P(z) = 0), the solution
isex< —3orx>1.

MCQ 23: Which of the following is the solution to the
inequality (z + 3)(z — 1) > 07?
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O -3<z<1 - =3 + 0 — 1 +

| |
Ozx<-3 \ \ \
Ox>1 e Method 2: Table of Signs

We analyze the sign of each factor.
Xrxr<-—-3orx>1

Answer: Let P(2) = (x + 3)(x — 1)3. The roots are at * = —3 x —00 -3 0 1 +oo
(multiplicity 1) and = 1 (multiplicity 3).
e Method 1: Sign Diagram z+3 - 0+ T +
We mark the roots on a number line. Since both factors have
odd multiplicity, the sign of P(z) will change at both roots. x - - 0 + +
We can test a value, for instance z = 2: (2 +3)(2 —1)3 =
(5)(1)% > 0. 1 _ _ 0 o+
+ -3 - +
‘ ! ) P() -0 + 0 - 0 +
[ [ v
e Method 2: Table of Signs Conclusion:
We analyze the sign of each factor. The sign of (z —1)® is  We are looking for where P(z) < 0.
the same as the sign of (z — 1). The sign diagrams show that P(x) is negative for x < —3 and
for0<ax<1.
Since the inequality is strict (<), the endpoints are not included
T —00 -3 1 +o00 . .
in the solution.
The solutionis x < —3 or 0 < = < 1.
3 - 0 + +
v Ex 25: Find the set of values for which (z+2)(x—1)(x—3) < 0.
(z—1)3 - - 0 +
Answer: Let P(l’) = (fﬂ —+ 2)(1’ — 1)($ — 3)
P(x) + 0 - 0 + 1. Find roots: The polynomial is already factorised. The
roots are x = =2, x = 1,z = 3.
Conclusion: 2. e Method 1: Draw Sign Diagram: We mark the
We are looking for where P(z) > 0. roots on a number line and test a value in each interval.
The sign diagrams show that P(z) is positive for z < —3 and for For example, test x = 4: (+)(+)(+) > 0.
x> 1.
- - — +
The polynomial is equal to zero at its roots, x = —3 and = = 1. ‘2 ‘1 :‘)) ‘
Combining these conditions (P(x) > 0 or P(z) = 0), the solution ! ! ! !
sz —3orz 21 e Method 2: Draw Table of Signs: We analyse the
MCQ 24: Which of the following is the solution to the sign of each individual factor across the intervals before
inequality 23 + 222 < 3z7 determining the sign of the final product.
Orx<—-3orx>1
Kaer<-3or0<z<l . - —2 1 8 +eo
0 -3<2<0 T+ 2 - 0 + + +
U -3<z<0orx>1
z—1 - - 0 + +

Answer: First, we rearrange the inequality to have zero on one
side. z—3 — — -0 <+
2?4+ 227 — 32 <0

Let P(x) = 2% + 22? — 3x. The roots are found by factoring: P(x) -0 + 06 - 0 +

P(z) = z(z* + 22— 3) = z(z + 3)(z — 1)
3. State Solution: We are looking for where P(x) < 0. The
The roots are at x = —3, x =0, and = = 1. sign diagram shows this is true for x < —2 and for 1 < z < 3.
The solution is (—oo, —2) U (1, 3).
e Method 1: Sign Diagram

We mark the roots on a number line. All roots have
multiplicity 1, so the sign will change at each root. We
can test a value, for instance z = 2: 2(5)(1) > 0. Answer: Let P(x) = 2% — 3z + 2.

Ex 26: Find the set of values for which 22 — 3z + 2 > 0.

www.commeunjeu.com 9
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1. Find roots: First, we factorise the polynomial.
P(z)=(z—1)(x —2)
The roots are x = 1 and = = 2.

2. e Method 1: Draw Sign Diagram: We mark the
roots on a number line and test a value in each interval.
For example, test x = 3: (3 —1)(3 —2) =(2)(1) > 0.
+ 1 — 2 +
\ \ .
[ [ ‘

e Method 2: Draw Table of Signs: We analyse the
sign of each factor.

x —00 1 2 +00
x—1 - 0 + +
x—2 - - 0 +
P(x) + 0 - 0 +

3. State Solution: We are looking for where P(z) > 0. This
occurs for x < 1 and for x > 2.
The solution is (—oo, 1) U (2, co).

D.2 SOLVING POLYNOMIAL AND RATIONAL
INEQUALITIES
Ex 27: Consider the inequality 2:;—_4_41 > 1.

1. Rewrite the inequality in the form f(z) > 0, where f(z) is
a single rational expression.

2. Find the critical values for the inequality.

3. Hence, solve the inequality ﬁ > 1.

Answer:

1. To rewrite the inequality, we first subtract 1 from both sides
and then find a common denominator:

—4
T 150
2¢ + 1

x—4—(2x+1)
2¢ +1
r—4—2xr—1

e S )

20+ 1 -
—x—95

20 +1 —

>0

So, f(x) = %;15

2. The critical values are the values of z for which the
numerator or the denominator is zero.

e Numerator: —x —5=0 — z = —5.

e Denominator: 2r+1=0 — z = —%.

The critical values are z = —5 and x = —1/2.

3. We use a sign table to determine the intervals where f(x) >
0.

WWww.commeunjeu.com 10

T —00 -5 —1/2 +00
—r =5 + 0 — —
2z + 1 — — +
f() -0+ -

We are looking for intervals where f(z) > 0. From the table,
this is the interval between -5 and -1/2.
We must also consider the equality. f(z) = 0 when the

numerator is zero, which is at + = —5. So, x = =5 is
included in the solution.
The denominator cannot be zero, so x = —1/2 is excluded

from the solution (indicated by the double bar in the table).
Therefore, the solution is [-5,—1/2).
Ex 28: Solve the inequality = < %

1. Rewrite the inequality in the form f(z) < 0, where f(z) is
a single rational expression.

2. Find the critical values for the inequality.

3

3. Hence, solve the inequality x < —=5.

Answer:

1. To rewrite the inequality, we move all terms to one side and
combine them into a single fraction:

€T —

r—2
37(56—2)—3<0
xr — 2 -

22 —2x—3
T U<
r—2 <0
(x—=3)(z+1) <0
T —2 -

So, f(x) = L=,

2. The critical values are the values of x for which the
numerator or the denominator is zero.

e Numerator: (x —3)(z+1)=0 = =3 orz=—1.

e Denominator: xt —2=0 = z = 2.
The critical values are x = —1, x = 2, and x = 3.

3. We use a sign table to determine the intervals where f(x) <
0.

x —00 -1 2 3 400
r+1 -0 + + +
T —2 — - + +
Tz —3 - - - 0 +
fx) - 0 -+ - 0 +
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We are looking for intervals where f(z) < 0. From the table, 2. Hence, fully factorize P(x).
these are the intervals (—oo, —1) and (2, 3).

We must also consider the equality. f(z) = 0 when the
numerator is zero, which occurs at t = —1 and = = 3. So,
these values are included in the solution.

The denominator cannot be zero, so x = 2 is excluded from Answer:

the solution. )
Therefore, the solution is (—oo, —1] U (2, 3]. 1. To show that (x — 1) is a factor, we can use the Factor

Theorem and evaluate P(1):

3. Using the factors of P(z), solve the inequality z3 — 22% —
5z 46 > 0.

Ex 29: Solve the inequality 2= < —15. P(1)=(1)P%—-2(1)%-5(1)+6=1-2-5+6=0
1. Reyvnte th(? inequality in the form f(z) < 0, where f(x) is Since P(1) = 0, (z — 1) is a factor of P(z).

a single rational expression.

2. We can now use long division to find the other factors.

2. Find the critical values for the inequality. Dividing P(z) by (z — 1):

. . 2 1
3. Hence, solve the inequality 3 < 7=
22 —2-6
Answer: T — 1) 23 —22% — 52 +6
_ .3 2
1. To rewrite the inequality, we move all terms to one side and 967-&-2
combine them into a single fraction: —x° =5z
2 —2z
1 v T
2 <0 —6x+6
r+3 -2 6 — 6
2w —2) — 1(z +3) EE—
<0 0
(z+3)(z—2)
20 —4—x—3 0
(z +3)(xz —2) < The quotient is 22 —  — 6. We can factor this quadratic:
r—7

(af+3)(x—2)<0 2 —2—-6=(z—3)(z+2)

g a7 Therefore, the full factorization of P(x) is (z—1)(x+2)(x —
o, f(z) = @r3)@—2)" 3).
2. The critical values are the values of z for which the 3

. The i lity 2® — 222 — 5 6>0i1 ivalent t
numerator or the denominator is zero. ¢ fnequaity @ * Sl is equivalent to (z +

2)(z —1)(x —3) > 0. The critical values are the roots of the
e Numerator: t —7=0 = z=171. polynomial: x = —2, z =1, and x = 3. We use a sign table

e Denominator: (r+3)(x—2)=0 = x=—-3orz=2. to solve the inequality.

The critical values are x = —3, x = 2, and x = 7.
T —00 -2 1 3 400
3. We use a sign table to determine the intervals where f(x) <
0. x+2 - 0 + + +
x —00 -3 2 7 +00 z—1 — - 0 + +
z+3 - + + + z—3 — - -0 -+
T =2 - - + + P(z) - 0 + 0 - 0 +
z—7 — - - 0 +
We are looking for the intervals where P(z) > 0. From the
table, these intervals are where the sign is positive. The
(=) N ™ -0 inequality is strict, so the endpoints are not included. The

solution is (—2,1) U (3, c0).

We are looking for intervals where f(x) < 0. From the table,
these are the intervals (—oo, —3) and (2, 7).

The inequality is strict (<), so the critical values are not
included in the solution.

Therefore, the solution is (—oo, —3) U (2,7).

Ex 30: Let P(z) = 2® — 222 — 52 + 6.
1. Show that (z — 1) is a factor of P(z).
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