

A GENERAL PRINCIPLES OF POLYNOMIAL GRAPHS

A.1 DETERMINING END BEHAVIOUR

Ex 1: For the polynomial $P(x) = -3x^5 + 4x^2 - 8x + 1$, determine the following limits:

1. $\lim_{x \rightarrow \infty} P(x) = \boxed{-\infty}$

2. $\lim_{x \rightarrow -\infty} P(x) = \boxed{+\infty}$

Answer: To determine the end behaviour, we factor out the leading term, $-3x^5$, from the polynomial:

$$\begin{aligned} P(x) &= -3x^5 + 4x^2 - 8x + 1 \\ &= -3x^5 \left(1 - \frac{4x^2}{3x^5} + \frac{8x}{3x^5} - \frac{1}{3x^5}\right) \\ &= -3x^5 \left(1 - \frac{4}{3x^3} + \frac{8}{3x^4} - \frac{1}{3x^5}\right) \end{aligned}$$

As $x \rightarrow \pm\infty$, all the fractional terms inside the parentheses approach 0. This means the entire expression in the parentheses approaches 1.

Therefore, for very large values of $|x|$, the behaviour of $P(x)$ is determined by the behaviour of its leading term, $-3x^5$.

The degree is $n = 5$ (odd) and the leading coefficient is $a_n = -3$ (negative).

1. As $x \rightarrow \infty$, an odd power of a large positive number is positive, but it is multiplied by a negative coefficient. Thus, $P(x) \rightarrow -\infty$.
2. As $x \rightarrow -\infty$, an odd power of a large negative number is negative. Multiplying by a negative coefficient (-3) makes the result positive. Thus, $P(x) \rightarrow \infty$.

The graph runs from top-left to bottom-right.

Ex 2: For the polynomial $P(x) = 2x^4 - 5x^3 + x - 10$, determine the following limits:

1. $\lim_{x \rightarrow \infty} P(x) = \boxed{+\infty}$

2. $\lim_{x \rightarrow -\infty} P(x) = \boxed{+\infty}$

Answer: To determine the end behaviour, we factor out the leading term, $2x^4$:

$$\begin{aligned} P(x) &= 2x^4 - 5x^3 + x - 10 \\ &= 2x^4 \left(1 - \frac{5x^3}{2x^4} + \frac{x}{2x^4} - \frac{10}{2x^4}\right) \\ &= 2x^4 \left(1 - \frac{5}{2x} + \frac{1}{2x^3} - \frac{5}{x^4}\right) \end{aligned}$$

As $x \rightarrow \pm\infty$, all the fractional terms inside the parentheses approach 0. This means the entire expression in the parentheses approaches 1.

Therefore, for very large values of $|x|$, the behaviour of $P(x)$ is determined by the behaviour of its leading term, $2x^4$.

The degree is $n = 4$ (even) and the leading coefficient is $a_n = 2$ (positive).

1. As $x \rightarrow \infty$, an even power of a large positive number is positive. Multiplying by a positive coefficient keeps it positive. Thus, $P(x) \rightarrow \infty$.

2. As $x \rightarrow -\infty$, an even power of a large negative number is positive. Multiplying by a positive coefficient keeps it positive. Thus, $P(x) \rightarrow \infty$.

The graph opens upwards, running from top-left to top-right.

Ex 3: For the polynomial $P(x) = x^7 + 100x^6 - 500x^2$, determine the following limits:

1. $\lim_{x \rightarrow \infty} P(x) = \boxed{+\infty}$

2. $\lim_{x \rightarrow -\infty} P(x) = \boxed{-\infty}$

Answer: To determine the end behaviour, we factor out the leading term, x^7 :

$$\begin{aligned} P(x) &= x^7 + 100x^6 - 500x^2 \\ &= x^7 \left(1 + \frac{100x^6}{x^7} - \frac{500x^2}{x^7}\right) \\ &= x^7 \left(1 + \frac{100}{x} - \frac{500}{x^5}\right) \end{aligned}$$

As $x \rightarrow \pm\infty$, all the fractional terms inside the parentheses approach 0. This means the entire expression in the parentheses approaches 1.

Therefore, for very large values of $|x|$, the behaviour of $P(x)$ is determined by the behaviour of its leading term, x^7 .

The degree is $n = 7$ (odd) and the leading coefficient is $a_n = 1$ (positive).

1. As $x \rightarrow \infty$, an odd power of a large positive number is positive. Thus, $P(x) \rightarrow \infty$.
2. As $x \rightarrow -\infty$, an odd power of a large negative number is negative. Thus, $P(x) \rightarrow -\infty$.

The graph runs from bottom-left to top-right.

Ex 4: For the polynomial $P(x) = 50 + x - 2x^6$, determine the following limits:

1. $\lim_{x \rightarrow \infty} P(x) = \boxed{-\infty}$

2. $\lim_{x \rightarrow -\infty} P(x) = \boxed{-\infty}$

Answer: First, we write the polynomial in standard form: $P(x) = -2x^6 + x + 50$. To determine the end behaviour, we factor out the leading term, $-2x^6$:

$$\begin{aligned} P(x) &= -2x^6 + x + 50 \\ &= -2x^6 \left(1 - \frac{x}{2x^6} - \frac{50}{2x^6}\right) \\ &= -2x^6 \left(1 - \frac{1}{2x^5} - \frac{25}{x^6}\right) \end{aligned}$$

As $x \rightarrow \pm\infty$, all the fractional terms inside the parentheses approach 0. This means the entire expression in the parentheses approaches 1.

Therefore, for very large values of $|x|$, the behaviour of $P(x)$ is determined by the behaviour of its leading term, $-2x^6$.

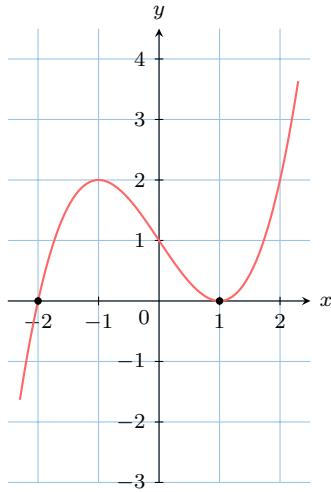
The degree is $n = 6$ (even) and the leading coefficient is $a_n = -2$ (negative).

- As $x \rightarrow \infty$, an even power of a large positive number is positive. Multiplying by a negative coefficient makes it negative. Thus, $P(x) \rightarrow -\infty$.
- As $x \rightarrow -\infty$, an even power of a large negative number is positive. Multiplying by a negative coefficient makes it negative. Thus, $P(x) \rightarrow -\infty$.

The graph opens downwards, running from bottom-left to bottom-right.

A.2 INTERPRETING GRAPHS AT THE ROOTS

MCQ 5: The graph of a polynomial $P(x)$ is shown below. Which of the following is the most likely factorisation of $P(x)$?



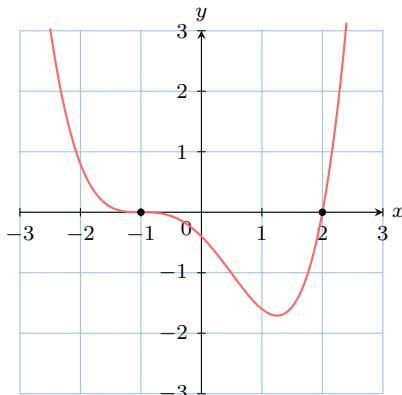
$(x + 2)(x - 1)$
 $(x + 2)^2(x - 1)$
 $(x + 2)(x - 1)^2$
 $(x + 2)^3(x - 1)$

Answer: The graph has two x-intercepts (roots) at $x = -2$ and $x = 1$.

- At $x = -2$, the graph **cuts** the axis, which implies the factor $(x + 2)$ has an odd multiplicity (likely 1 or 3).
- At $x = 1$, the graph **touches** the axis, which implies the factor $(x - 1)$ has an even multiplicity (likely 2).

Combining these observations, the most likely factorisation is $P(x) = a(x + 2)(x - 1)^2$ for some constant a .

MCQ 6: The graph of a polynomial $P(x)$ is shown below. Which of the following is the most likely factorisation of $P(x)$?



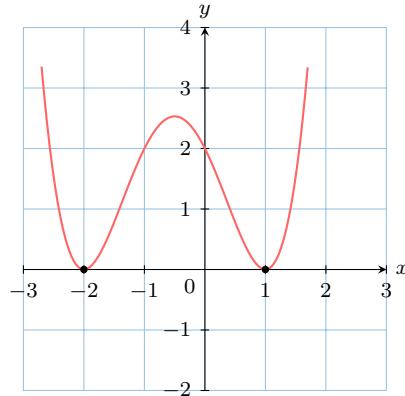
$(x + 1)(x - 2)$
 $(x + 1)^2(x - 2)$
 $(x + 1)(x - 2)^3$
 $(x + 1)^3(x - 2)$

Answer: The graph has two x-intercepts at $x = -1$ and $x = 2$.

- At $x = -1$, the graph has a **point of inflection with a horizontal tangent**, which implies the factor $(x + 1)$ has a multiplicity of 3.
- At $x = 2$, the graph **cuts** the axis, which implies the factor $(x - 2)$ has a multiplicity of 1.

Combining these observations, the most likely factorisation is $P(x) = a(x + 1)^3(x - 2)$ for some constant a .

MCQ 7: The graph of a polynomial $P(x)$ is shown below. Which of the following is the most likely factorisation of $P(x)$?



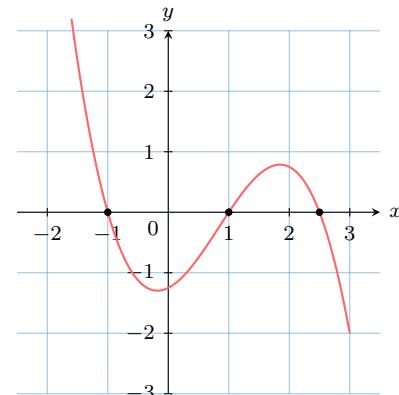
$(x + 2)(x - 1)$
 $(x - 2)(x + 1)^2$
 $(x + 2)^2(x - 1)^2$
 $(x + 2)^3(x - 1)$

Answer: The graph has two x-intercepts at $x = -2$ and $x = 1$.

- At $x = -2$, the graph **touches** the axis, which implies the factor $(x + 2)$ has an even multiplicity (likely 2).
- At $x = 1$, the graph also **touches** the axis, which implies the factor $(x - 1)$ has an even multiplicity (likely 2).

Combining these observations, the most likely factorisation is $P(x) = a(x + 2)^2(x - 1)^2$ for some constant a .

MCQ 8: The graph of a polynomial $P(x)$ is shown below. Which of the following is the most likely factorisation of $P(x)$?



- $(x+1)(x-1)(x-2.5)$
- $-(x+1)(x-1)(x-2.5)$
- $-(x-1)(x+1)^2$
- $(x+1)(x-1)(x-2.5)^2$

Answer: The graph has three x-intercepts at $x = -1, x = 1$, and $x = 2.5$.

- At each root, the graph **cuts** the axis, which implies that each corresponding factor, $(x+1)$, $(x-1)$, and $(x-2.5)$, has a multiplicity of 1.
- We also observe the end behaviour. As $x \rightarrow \infty$, $y \rightarrow -\infty$. This indicates a negative leading coefficient.

Combining these observations, the most likely factorisation is $P(x) = a(x+1)(x-1)(x-2.5)$ where $a < 0$. Option B matches this form.

A.3 INTERPRETING GRAPHS AT THE ROOTS

Ex 9: A polynomial function is given by $P(x) = (x-1)^3(x-2)$. Describe the behaviour of the graph of $y = P(x)$ at its x-intercepts.

Answer: The roots of the polynomial are at $x = 1$ and $x = 2$.

- The root $x = 1$ comes from the factor $(x-1)^3$, which has a multiplicity of 3. Therefore, the graph has a **point of horizontal inflection** on the x-axis at $x = 1$.
- The root $x = 2$ comes from the factor $(x-2)^1$, which has a multiplicity of 1. Therefore, the graph **cuts** the x-axis at $x = 2$.

Ex 10: A polynomial function is given by $P(x) = (x+3)^2(x-4)$. Describe the behaviour of the graph of $y = P(x)$ at its x-intercepts.

Answer: The roots of the polynomial are at $x = -3$ and $x = 4$.

- The root $x = -3$ comes from the factor $(x+3)^2$, which has a multiplicity of 2. Therefore, the graph **touches** the x-axis at $x = -3$.
- The root $x = 4$ comes from the factor $(x-4)^1$, which has a multiplicity of 1. Therefore, the graph **cuts** the x-axis at $x = 4$.

Ex 11: A polynomial function is given by $P(x) = x(x-5)^2(x+1)^3$. Describe the behaviour of the graph of $y = P(x)$ at its x-intercepts.

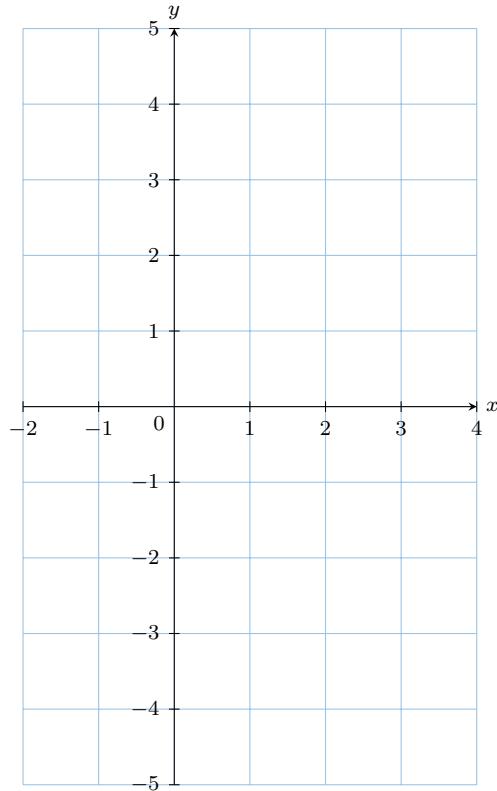
Answer: The roots of the polynomial are at $x = 0, x = 5$, and $x = -1$.

- The root $x = 0$ comes from the factor x^1 , which has a multiplicity of 1. Therefore, the graph **cuts** the x-axis at the origin.
- The root $x = 5$ comes from the factor $(x-5)^2$, which has a multiplicity of 2. Therefore, the graph **touches** the x-axis at $x = 5$.
- The root $x = -1$ comes from the factor $(x+1)^3$, which has a multiplicity of 3. Therefore, the graph has a **point of horizontal inflection** on the x-axis at $x = -1$.

B GRAPHING CUBIC FUNCTIONS

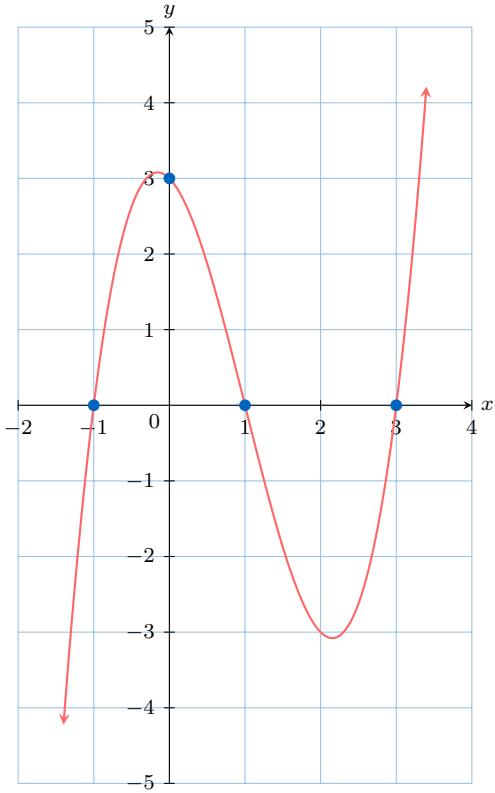
B.1 SKETCHING CUBIC FUNCTIONS

Ex 12: Use the axes intercepts to sketch the graph of $y = (x+1)(x-1)(x-3)$.



Answer:

1. **Roots:** The polynomial is fully factored with three distinct real roots. The graph **cuts** the x-axis at $x = -1, x = 1$, and $x = 3$.
2. **y-intercept:** When $x = 0$, $y = (1)(-1)(-3) = 3$. The y-intercept is $(0, 3)$.
3. **End Behaviour:** The leading term is $(x)(x)(x) = x^3$. The degree is odd and the leading coefficient is positive. Thus, as $x \rightarrow \infty, y \rightarrow \infty$ and as $x \rightarrow -\infty, y \rightarrow -\infty$.
4. **Sketch:**



Ex 13: Use the axes intercepts to sketch the graph of $y = -\frac{1}{2}(x+1)^2(x-3)$.

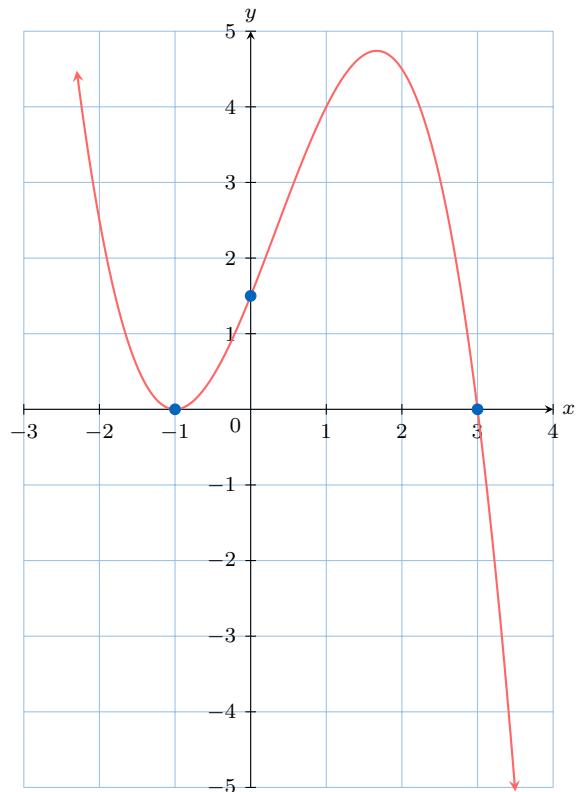


Answer:

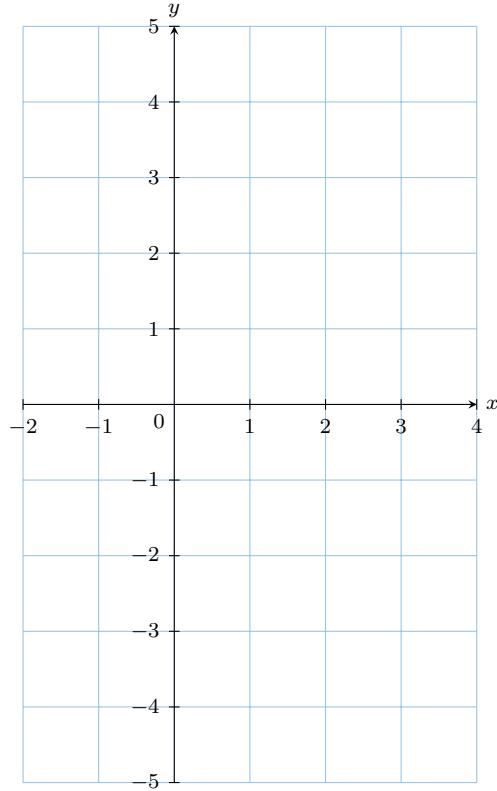
- Roots:** The polynomial is factored. There is a repeated root at $x = -1$ (from the $(x+1)^2$ term), so the graph **touches** the x-axis at this point. There is a single root at $x = 3$, so the graph **cuts** the x-axis at this point.
- y-intercept:** When $x = 0$, $y = -\frac{1}{2}(0+1)^2(0-3) = -\frac{1}{2}(1)(-3) = \frac{3}{2}$. The y-intercept is $(0, 1.5)$.

3. End Behaviour: The leading term is $-\frac{1}{2}(x^2)(x) = -\frac{1}{2}x^3$. The degree is odd and the leading coefficient is negative. Thus, as $x \rightarrow \infty$, $y \rightarrow -\infty$ and as $x \rightarrow -\infty$, $y \rightarrow \infty$.

4. Sketch:



Ex 14: Use the axes intercepts to sketch the graph of $y = \frac{1}{2}(x-1)^3$.



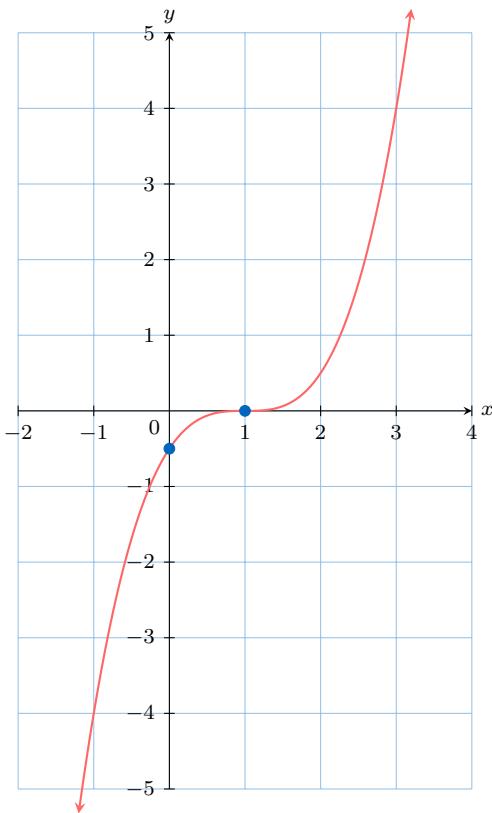
Answer:

- Roots:** The polynomial has a root of multiplicity 3 at $x = 1$. This means the graph **cuts** the x-axis at $x = 1$ with a **stationary point of inflection**.

2. **y-intercept:** When $x = 0$, $y = \frac{1}{2}(0 - 1)^3 = \frac{1}{2}(-1) = -\frac{1}{2}$.
The y-intercept is $(0, -0.5)$.

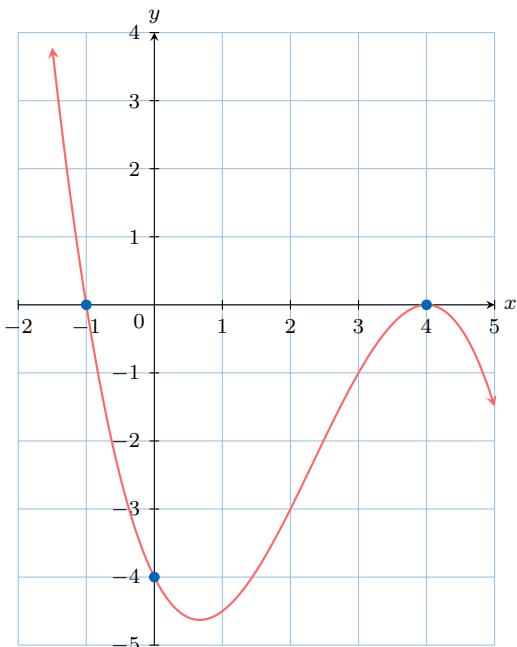
3. **End Behaviour:** The leading term is $\frac{1}{2}x^3$. The degree is odd and the leading coefficient is positive. Thus, as $x \rightarrow \infty, y \rightarrow \infty$ and as $x \rightarrow -\infty, y \rightarrow -\infty$.

4. **Sketch:**



B.2 FINDING THE FUNCTION FROM A GRAPH

Ex 15: Find the equation of the cubic function shown in the graph below.



$$P(x) = [-1/4(x + 1)(x - 4)^2]$$

Answer:

1. **Identify the roots from the graph:**

- The graph **cuts** the x-axis at $x = -1$. This corresponds to a single root, giving a factor of $(x - (-1)) = (x + 1)$.
- The graph **touches** the x-axis at $x = 4$. This indicates a repeated root of even multiplicity. For a cubic function, this must be a root of multiplicity 2, giving a factor of $(x - 4)^2$.

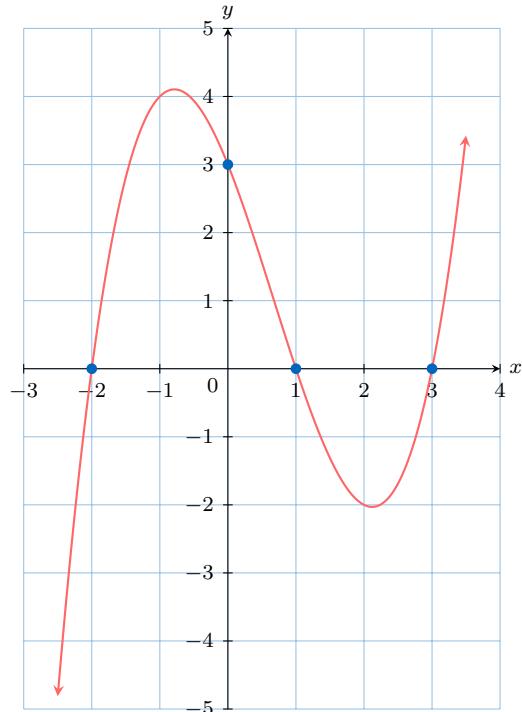
2. **Write the general equation of the function:** Based on the roots, the equation of the cubic function can be written in the form: $y = a(x + 1)(x - 4)^2$, where a is a constant.

3. **Use the y-intercept to find the value of a :** The graph passes through the point $(0, -4)$. Substitute $x = 0$ and $y = -4$ into the equation:

$$\begin{aligned} -4 &= a(0 + 1)(0 - 4)^2 \\ -4 &= a(1)(-4)^2 \\ -4 &= a(16) \\ a &= \frac{-4}{16} \\ a &= -\frac{1}{4} \end{aligned}$$

4. **Write the final equation:** Substituting the value of a back into the general equation, we get: $y = -\frac{1}{4}(x + 1)(x - 4)^2$

Ex 16: Find the equation of the cubic function shown in the graph below.



$$P(x) = [1/2(x + 2)(x - 1)(x - 3)]$$

Answer:

1. **Identify the roots from the graph:**

- The graph **cuts** the x-axis at $x = -2$, $x = 1$, and $x = 3$. These are all single roots.
- The corresponding factors are $(x + 2)$, $(x - 1)$, and $(x - 3)$.

2. **Write the general equation of the function:** Based on the roots, the equation of the cubic function can be written in the form: $y = a(x+2)(x-1)(x-3)$, where a is a constant.

3. **Use the y-intercept to find the value of a :** The graph passes through the point $(0, 3)$. Substitute $x = 0$ and $y = 3$ into the equation:

$$3 = a(0+2)(0-1)(0-3)$$

$$3 = a(2)(-1)(-3)$$

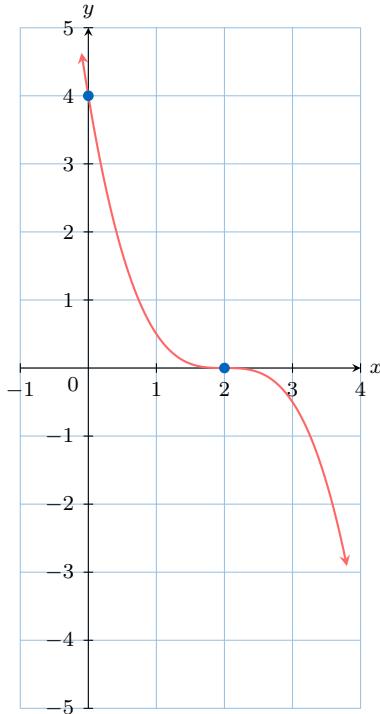
$$3 = a(6)$$

$$a = \frac{3}{6}$$

$$a = \frac{1}{2}$$

4. **Write the final equation:** Substituting the value of a back into the general equation, we get: $y = \frac{1}{2}(x+2)(x-1)(x-3)$

Ex 17: Find the equation of the cubic function shown in the graph below.



$$P(x) = \boxed{-1/2(x-2)^3}$$

Answer:

1. **Identify the roots from the graph:**

- The graph cuts the x-axis at $x = 2$ with a **stationary point of inflection**. This indicates a root of multiplicity 3.
- The corresponding factor is $(x-2)^3$.

2. **Write the general equation of the function:** Based on the root, the equation of the cubic function can be written in the form: $y = a(x-2)^3$, where a is a constant.

3. **Use the y-intercept to find the value of a :** The graph passes through the point $(0, 4)$. Substitute $x = 0$ and $y = 4$ into the equation:

into the equation:

$$4 = a(0-2)^3$$

$$4 = a(-8)$$

$$a = \frac{4}{-8}$$

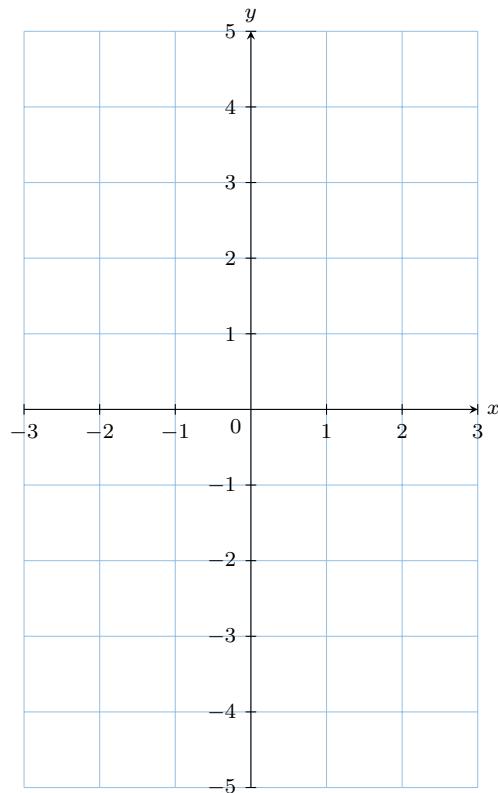
$$a = -\frac{1}{2}$$

4. **Write the final equation:** Substituting the value of a back into the general equation, we get: $y = -\frac{1}{2}(x-2)^3$

C GRAPHING QUARTIC FUNCTIONS

C.1 SKETCHING QUARTIC FUNCTIONS

Ex 18: Use the axes intercepts to sketch the graph of $y = (x+2)(x+1)(x-1)(x-2)$.



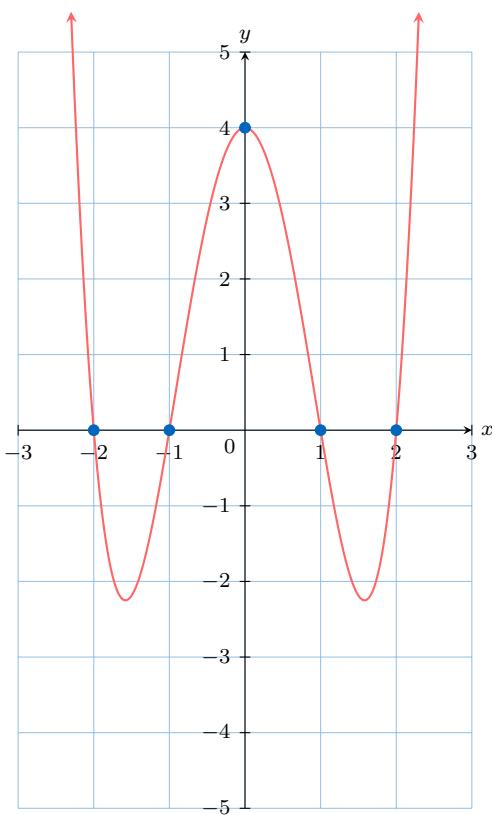
Answer:

1. **Roots:** The polynomial is fully factored with four distinct real roots. The graph cuts the x-axis at $x = -2, x = -1, x = 1$, and $x = 2$.

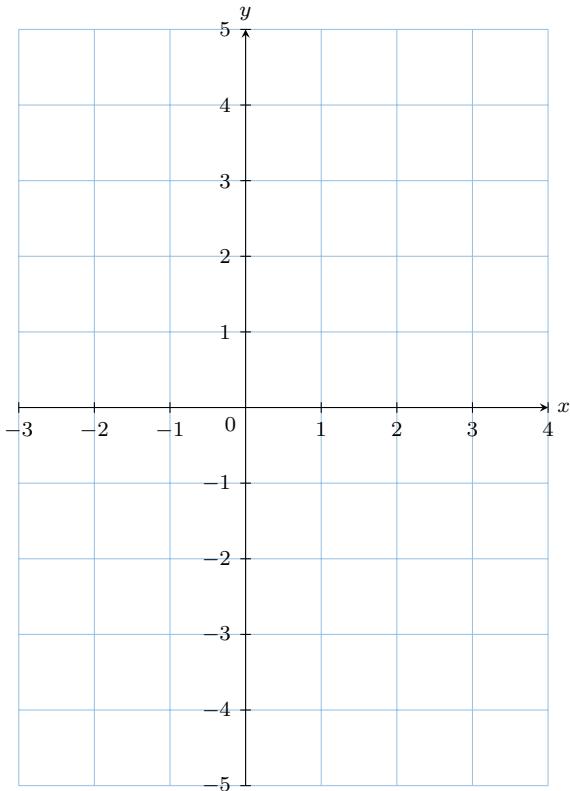
2. **y-intercept:** When $x = 0$, $y = (2)(1)(-1)(-2) = 4$. The y-intercept is $(0, 4)$.

3. **End Behaviour:** The leading term is $(x)(x)(x)(x) = x^4$. The degree is even and the leading coefficient is positive. Thus, as $x \rightarrow \infty, y \rightarrow \infty$ and as $x \rightarrow -\infty, y \rightarrow \infty$.

4. **Sketch:**



Ex 19: Use the axes intercepts to sketch the graph of $y = -\frac{1}{4}(x+2)^2(x-1)(x-3)$.



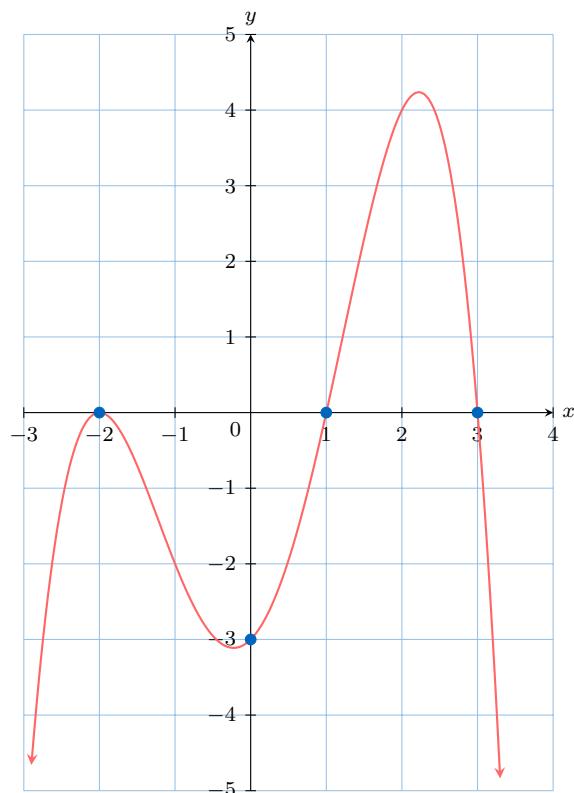
Answer:

1. Roots: The polynomial is factored. There is a repeated root at $x = -2$ (multiplicity 2), so the graph **touches** the x-axis at this point. There are single roots at $x = 1$ and $x = 3$, where the graph **cuts** the x-axis.

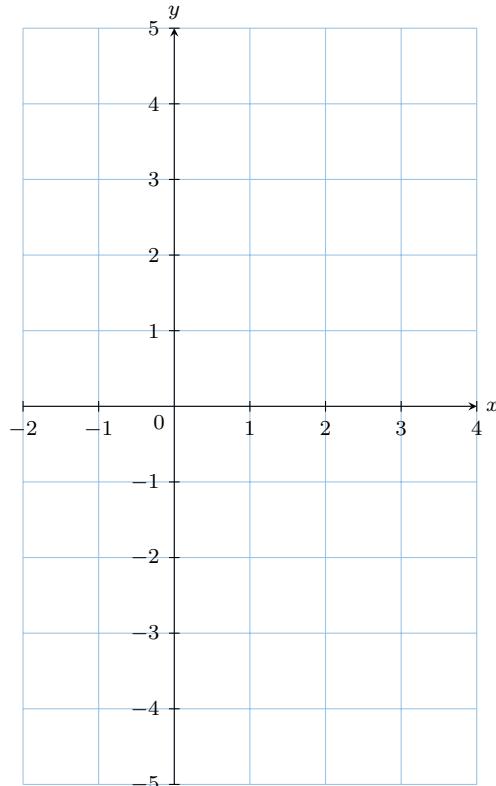
2. y-intercept: When $x = 0$, $y = -\frac{1}{4}(0+2)^2(0-1)(0-3) = -\frac{1}{4}(4)(-1)(-3) = -3$. The y-intercept is $(0, -3)$.

3. End Behaviour: The leading term is $-\frac{1}{4}(x^2)(x)(x) = -\frac{1}{4}x^4$. The degree is even and the leading coefficient is negative. Thus, as $x \rightarrow \infty$, $y \rightarrow -\infty$ and as $x \rightarrow -\infty$, $y \rightarrow -\infty$.

4. Sketch:



Ex 20: Use the axes intercepts to sketch the graph of $y = \frac{1}{8}(x-2)^3(x+1)$.



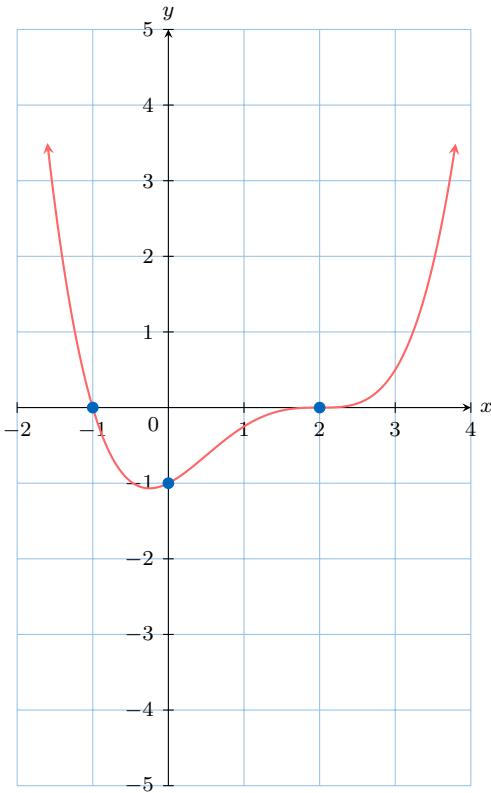
Answer:

1. **Roots:** The polynomial has a root of multiplicity 3 at $x = 2$. This means the graph **cuts** the x-axis at $x = 2$ with a **stationary point of inflection**. There is a single root at $x = -1$, where the graph **cuts** the x-axis.

2. **y-intercept:** When $x = 0$, $y = \frac{1}{8}(0-2)^3(0+1) = \frac{1}{8}(-8)(1) = -1$. The y-intercept is $(0, -1)$.

3. **End Behaviour:** The leading term is $\frac{1}{8}(x^3)(x) = \frac{1}{8}x^4$. The degree is even and the leading coefficient is positive. Thus, as $x \rightarrow \infty, y \rightarrow \infty$ and as $x \rightarrow -\infty, y \rightarrow \infty$.

4. **Sketch:**



• **Method 2: Table of Signs**

We analyze the sign of each factor. Note that $(x-4)^2$ is always non-negative.

x	$-\infty$	-1	4	$+\infty$
$(x-4)^2$	+		0	+
$x+1$	-	0	+	
$P(x)$	-	0	+	+

Conclusion:

We are looking for where $P(x) \leq 0$.

The sign diagrams show that $P(x)$ is negative for $x < -1$.

The polynomial is equal to zero at its roots, $x = -1$ and $x = 4$. Combining these conditions ($P(x) < 0$ or $P(x) = 0$), the solution is $x \leq -1$ or $x = 4$.

MCQ 22: Which of the following is the solution to the inequality $(x+3)(x-1)^3 \geq 0$?

$-3 \leq x \leq 1$
 $x \leq -3$
 $x \geq 1$
 $x \leq -3$ or $x \geq 1$

Answer: Let $P(x) = (x+3)(x-1)^3$. The roots are at $x = -3$ (multiplicity 1) and $x = 1$ (multiplicity 3).

• **Method 1: Sign Diagram**

We mark the roots on a number line. Since both factors have odd multiplicity, the sign of $P(x)$ will change at both roots. We can test a value, for instance $x = 2$: $(2+3)(2-1)^3 = (5)(1)^3 > 0$.

• **Method 2: Table of Signs**

We analyze the sign of each factor. The sign of $(x-1)^3$ is the same as the sign of $(x-1)$.

x	$-\infty$	-3	1	$+\infty$
$x+3$	-	0	+	
$(x-1)^3$	-	-	0	+
$P(x)$	+	0	-	+

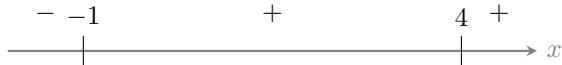
Conclusion:

We are looking for where $P(x) \geq 0$.

The sign diagrams show that $P(x)$ is positive for $x < -3$ and for $x > 1$.

The polynomial is equal to zero at its roots, $x = -3$ and $x = 1$. Combining these conditions ($P(x) > 0$ or $P(x) = 0$), the solution is $x \leq -3$ or $x \geq 1$.

MCQ 23: Which of the following is the solution to the inequality $(x+3)(x-1)^3 \geq 0$?



$-3 \leq x \leq 1$

$x \leq -3$

$x \geq 1$

$x \leq -3$ or $x \geq 1$

Answer: Let $P(x) = (x+3)(x-1)^3$. The roots are at $x = -3$ (multiplicity 1) and $x = 1$ (multiplicity 3).

• **Method 1: Sign Diagram**

We mark the roots on a number line. Since both factors have odd multiplicity, the sign of $P(x)$ will change at both roots. We can test a value, for instance $x = 2$: $(2+3)(2-1)^3 = (5)(1)^3 > 0$.

• **Method 2: Table of Signs**

We analyze the sign of each factor. The sign of $(x-1)^3$ is the same as the sign of $(x-1)$.

x	$-\infty$	-3	1	$+\infty$
$x+3$	-	0	+	
$(x-1)^3$	-	-	0	+
$P(x)$	+	0	-	0

Conclusion:

We are looking for where $P(x) \geq 0$.

The sign diagrams show that $P(x)$ is positive for $x < -3$ and for $x > 1$.

The polynomial is equal to zero at its roots, $x = -3$ and $x = 1$. Combining these conditions ($P(x) > 0$ or $P(x) = 0$), the solution is $x \leq -3$ or $x \geq 1$.

MCQ 24: Which of the following is the solution to the inequality $x^3 + 2x^2 < 3x$?

$x < -3$ or $x > 1$

$x < -3$ or $0 < x < 1$

$-3 < x < 0$

$-3 < x < 0$ or $x > 1$

Answer: First, we rearrange the inequality to have zero on one side.

$$x^3 + 2x^2 - 3x < 0$$

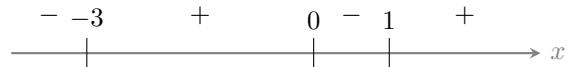
Let $P(x) = x^3 + 2x^2 - 3x$. The roots are found by factoring:

$$P(x) = x(x^2 + 2x - 3) = x(x+3)(x-1)$$

The roots are at $x = -3$, $x = 0$, and $x = 1$.

• **Method 1: Sign Diagram**

We mark the roots on a number line. All roots have multiplicity 1, so the sign will change at each root. We can test a value, for instance $x = 2$: $2(5)(1) > 0$.



• **Method 2: Table of Signs**

We analyze the sign of each factor.

x	$-\infty$	-3	0	1	$+\infty$
$x+3$	-	0	+		
x	-	-	0	+	
$x-1$	-	-	-	0	+
$P(x)$	-	0	+	0	+

Conclusion:

We are looking for where $P(x) < 0$.

The sign diagrams show that $P(x)$ is negative for $x < -3$ and for $0 < x < 1$.

Since the inequality is strict ($<$), the endpoints are not included in the solution.

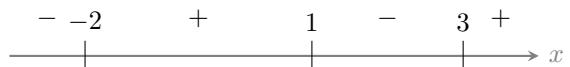
The solution is $x < -3$ or $0 < x < 1$.

Ex 25: Find the set of values for which $(x+2)(x-1)(x-3) < 0$.

Answer: Let $P(x) = (x+2)(x-1)(x-3)$.

1. **Find roots:** The polynomial is already factorised. The roots are $x = -2, x = 1, x = 3$.

2. • **Method 1: Draw Sign Diagram:** We mark the roots on a number line and test a value in each interval. For example, test $x = 4$: $(+)(+)(+) > 0$.



• **Method 2: Draw Table of Signs:** We analyse the sign of each individual factor across the intervals before determining the sign of the final product.

x	$-\infty$	-2	1	3	$+\infty$
$x+2$	-	0	+		
$x-1$	-	-	0	+	
$x-3$	-	-	-	0	+
$P(x)$	-	0	+	0	+

3. **State Solution:** We are looking for where $P(x) < 0$. The sign diagram shows this is true for $x < -2$ and for $1 < x < 3$. The solution is $(-\infty, -2) \cup (1, 3)$.

Ex 26: Find the set of values for which $x^2 - 3x + 2 > 0$.

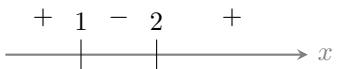
Answer: Let $P(x) = x^2 - 3x + 2$.

1. **Find roots:** First, we factorise the polynomial.

$$P(x) = (x - 1)(x - 2)$$

The roots are $x = 1$ and $x = 2$.

2. • **Method 1: Draw Sign Diagram:** We mark the roots on a number line and test a value in each interval. For example, test $x = 3$: $(3 - 1)(3 - 2) = (2)(1) > 0$.



• **Method 2: Draw Table of Signs:** We analyse the sign of each factor.

x	$-\infty$	1	2	$+\infty$
$x - 1$	—	0	+	—
$x - 2$	—	—	0	+
$P(x)$	+	0	—	0

3. **State Solution:** We are looking for where $P(x) > 0$. This occurs for $x < 1$ and for $x > 2$.

The solution is $(-\infty, 1) \cup (2, \infty)$.

D.2 SOLVING POLYNOMIAL AND RATIONAL INEQUALITIES

Ex 27: Consider the inequality $\frac{x-4}{2x+1} \geq 1$.

1. Rewrite the inequality in the form $f(x) \geq 0$, where $f(x)$ is a single rational expression.
2. Find the critical values for the inequality.
3. Hence, solve the inequality $\frac{x-4}{2x+1} \geq 1$.

Answer:

1. To rewrite the inequality, we first subtract 1 from both sides and then find a common denominator:

$$\begin{aligned} \frac{x-4}{2x+1} - 1 &\geq 0 \\ \frac{x-4 - (2x+1)}{2x+1} &\geq 0 \\ \frac{x-4 - 2x-1}{2x+1} &\geq 0 \\ \frac{-x-5}{2x+1} &\geq 0 \end{aligned}$$

So, $f(x) = \frac{-x-5}{2x+1}$.

2. The critical values are the values of x for which the numerator or the denominator is zero.

- Numerator: $-x - 5 = 0 \implies x = -5$.
- Denominator: $2x + 1 = 0 \implies x = -\frac{1}{2}$.

The critical values are $x = -5$ and $x = -\frac{1}{2}$.

3. We use a sign table to determine the intervals where $f(x) \geq 0$.

x	$-\infty$	-5	$-1/2$	$+\infty$
$-x - 5$	+	0	—	—
$2x + 1$	—	—		+
$f(x)$	—	0	+	—

We are looking for intervals where $f(x) \geq 0$. From the table, this is the interval between -5 and $-1/2$.

We must also consider the equality. $f(x) = 0$ when the numerator is zero, which is at $x = -5$. So, $x = -5$ is included in the solution.

The denominator cannot be zero, so $x = -1/2$ is excluded from the solution (indicated by the double bar in the table). Therefore, the solution is $[-5, -1/2)$.

Ex 28: Solve the inequality $x \leq \frac{3}{x-2}$.

1. Rewrite the inequality in the form $f(x) \leq 0$, where $f(x)$ is a single rational expression.
2. Find the critical values for the inequality.
3. Hence, solve the inequality $x \leq \frac{3}{x-2}$.

Answer:

1. To rewrite the inequality, we move all terms to one side and combine them into a single fraction:

$$\begin{aligned} x - \frac{3}{x-2} &\leq 0 \\ \frac{x(x-2) - 3}{x-2} &\leq 0 \\ \frac{x^2 - 2x - 3}{x-2} &\leq 0 \\ \frac{(x-3)(x+1)}{x-2} &\leq 0 \end{aligned}$$

So, $f(x) = \frac{(x-3)(x+1)}{x-2}$.

2. The critical values are the values of x for which the numerator or the denominator is zero.

- Numerator: $(x-3)(x+1) = 0 \implies x = 3$ or $x = -1$.
- Denominator: $x-2 = 0 \implies x = 2$.

The critical values are $x = -1$, $x = 2$, and $x = 3$.

3. We use a sign table to determine the intervals where $f(x) \leq 0$.

x	$-\infty$	-1	2	3	$+\infty$
$x + 1$	—	0	+	+	+
$x - 2$	—	—		+	+
$x - 3$	—	—	—	0	+
$f(x)$	—	0	+	—	0

We are looking for intervals where $f(x) \leq 0$. From the table, these are the intervals $(-\infty, -1)$ and $(2, 3)$.

We must also consider the equality. $f(x) = 0$ when the numerator is zero, which occurs at $x = -1$ and $x = 3$. So, these values are included in the solution.

The denominator cannot be zero, so $x = 2$ is excluded from the solution.

Therefore, the solution is $(-\infty, -1] \cup (2, 3]$.

Ex 29: Solve the inequality $\frac{2}{x+3} < \frac{1}{x-2}$.

1. Rewrite the inequality in the form $f(x) < 0$, where $f(x)$ is a single rational expression.

2. Find the critical values for the inequality.

3. Hence, solve the inequality $\frac{2}{x+3} < \frac{1}{x-2}$.

Answer:

1. To rewrite the inequality, we move all terms to one side and combine them into a single fraction:

$$\begin{aligned} \frac{2}{x+3} - \frac{1}{x-2} &< 0 \\ \frac{2(x-2) - 1(x+3)}{(x+3)(x-2)} &< 0 \\ \frac{2x-4-x-3}{(x+3)(x-2)} &< 0 \\ \frac{x-7}{(x+3)(x-2)} &< 0 \end{aligned}$$

So, $f(x) = \frac{x-7}{(x+3)(x-2)}$.

2. The critical values are the values of x for which the numerator or the denominator is zero.

• Numerator: $x - 7 = 0 \implies x = 7$.

• Denominator: $(x+3)(x-2) = 0 \implies x = -3$ or $x = 2$.

The critical values are $x = -3$, $x = 2$, and $x = 7$.

3. We use a sign table to determine the intervals where $f(x) < 0$.

x	$-\infty$	-3	2	7	$+\infty$
$x+3$	-	+	+	+	
$x-2$	-	-	+	+	
$x-7$	-	-	-	0	+
$f(x)$	-	+	-	0	+

We are looking for intervals where $f(x) < 0$. From the table, these are the intervals $(-\infty, -3)$ and $(2, 7)$.

The inequality is strict ($<$), so the critical values are not included in the solution.

Therefore, the solution is $(-\infty, -3) \cup (2, 7)$.

Ex 30: Let $P(x) = x^3 - 2x^2 - 5x + 6$.

1. Show that $(x - 1)$ is a factor of $P(x)$.

2. Hence, fully factorize $P(x)$.

3. Using the factors of $P(x)$, solve the inequality $x^3 - 2x^2 - 5x + 6 > 0$.

Answer:

1. To show that $(x - 1)$ is a factor, we can use the Factor Theorem and evaluate $P(1)$:

$$P(1) = (1)^3 - 2(1)^2 - 5(1) + 6 = 1 - 2 - 5 + 6 = 0$$

Since $P(1) = 0$, $(x - 1)$ is a factor of $P(x)$.

2. We can now use long division to find the other factors. Dividing $P(x)$ by $(x - 1)$:

$$\begin{array}{r} x^2 - x - 6 \\ x - 1 \) \overline{x^3 - 2x^2 - 5x + 6} \\ \underline{-x^3 + x^2} \\ -x^2 - 5x \\ \underline{-x^2 - x} \\ -6x + 6 \\ \underline{-6x - 6} \\ 0 \end{array}$$

The quotient is $x^2 - x - 6$. We can factor this quadratic:

$$x^2 - x - 6 = (x - 3)(x + 2)$$

Therefore, the full factorization of $P(x)$ is $(x - 1)(x + 2)(x - 3)$.

3. The inequality $x^3 - 2x^2 - 5x + 6 > 0$ is equivalent to $(x + 2)(x - 1)(x - 3) > 0$. The critical values are the roots of the polynomial: $x = -2$, $x = 1$, and $x = 3$. We use a sign table to solve the inequality.

x	$-\infty$	-2	1	3	$+\infty$
$x + 2$	-	0	+	+	+
$x - 1$	-	-	0	+	+
$x - 3$	-	-	-	0	+
$P(x)$	-	0	+	0	+

We are looking for the intervals where $P(x) > 0$. From the table, these intervals are where the sign is positive. The inequality is strict, so the endpoints are not included. The solution is $(-2, 1) \cup (3, \infty)$.

