INTEGERS

A DEFINITION

Discover: On a distant planet, two tribes are at war: the **positives** and the **negatives**.

• When troops from the same tribe meet, they unite.

• When a positive and a negative meet, they cancel each other out.

• Let's see what happens if 2 positives meet 1 negative,

There remains 1 positive.

- To show which tribe the number belongs to, we put a sign in front of the number:
 - The + sign for the tribe of **positives**.

- The - sign for the tribe of **negatives**.

$$-3 =$$

• Now, let's see what happens when 3 positives meet 1 negative.

$$(+3)$$
 + (-1) = +2

There remains 2 positives.

• Finally, let's see what happens when 2 positives meet 2 negatives.

$$(+2)$$
 + (-2) = 0

There remains 0.

Definition Positive and Negative Numbers —

• Positive numbers are $+1, +2, \dots$ We write them with a positive sign (+) before the number:

• Negative numbers are $-1, -2, \ldots$ We write them with a negative sign (-) before the number:

$$-3 = \bigcirc \bigcirc$$

• Positive numbers are the opposite of negative numbers:

$$(+2) + (-2) = 0$$

$$-2 \text{ is the opposite of } +2.$$

 \bullet Integer numbers are positive numbers, negative numbers, and zero :

$$\ldots, -3, -2, -1, 0, +1, +2, +3, \ldots$$

• Positive numbers can be written with or without a positive sign (+) in front of the number:

- To avoid confusion between the sign of the number and the sign of the operation, we can use parentheses. For example, +1 + -2 becomes (+1) + (-2).
- 0 is neither positive nor negative.

Ex: Calculate (+1) + (-2).

Answer:

• So, (+1) + (-2) = -1.

Definition Absolute Value -

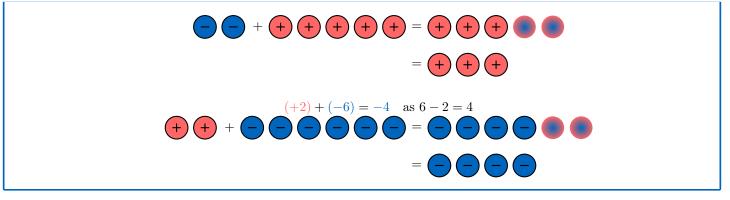
The absolute value of a number is the number without its sign.

- The absolute value of $+2 = \bigcirc \bigcirc$ is 2.
- The absolute value of $-3 = \bigcirc \bigcirc$ is 3.

B RULES OF ADDITION

Method Rules of Addition

• When you add two positive numbers, add their absolute values. The sum is also a positive number.


$$(+2) + (+7) = +9$$
 as $2 + 7 = 9$

• When you add two negative numbers, add their absolute values. The sum is also a negative number.

$$(-5) + (-10) = -15$$
 as $5 + 10 = 15$

• When you add a **positive number** and a **negative number**, subtract the smaller absolute value from the larger one and use the sign of the number with the larger absolute value.

$$(-2) + (+5) = +3$$
 as $5 - 2 = 3$

Ex: Calculate (-10) + (+3)

Answer:

•
$$(-10) + (+3) = -7$$
 as $10 - 3 = 7$

C SUBTRACTION

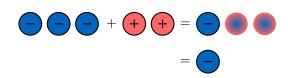
Discover:

• - For the subtraction, (+3) - (+2):

we remove 2 positives from 3 positives, leaving us with 1 positive.

- For the addition, (+3) + (-2):

we remove again 2 positives from 3 positives.


- Therefore, these two operations are equivalent:

This shows that subtracting a positive number is the same as adding its opposite.

• - For the subtraction, (-3) - (-2):

we remove 2 negatives from 3 negatives, leaving us with 1 negative.

- For the addition, (-3) + (+2):

(p

we remove again 2 negatives from 3 negatives.

- Therefore, these two operations are equivalent:

$$(-3) - (-2) = (-3) + (+2)$$

$$- - - - - - + + +$$

This shows that subtracting a negative number is the same as adding its opposite.

• In conclusion, these examples show a fundamental principle of arithmetic: subtracting any number is equivalent to adding the number with its opposite sign.

Definition Subtraction —

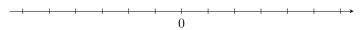
Subtracting a number is adding its opposite.

Ex: Convert the subtraction into addition: (+4) - (+2)

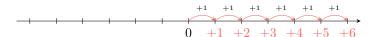
Answer:

- \bullet (+4) (+2) = (+4) + (-2)
- + + + + + + = + + + + + =

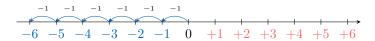
Ex: Calculate (+4) - (-2)


Answer:

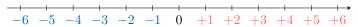
$$(+4) - (-2) = (+4) + (+2)$$
 (add the opposite)
= $+6$ (same sign: add the absolute values)


D ON THE NUMBER LINE

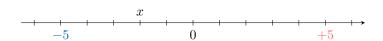
Discover:


• To show both positive and negative numbers on a number line, we extend the number line in both directions from zero.

• For each move from left to right by 1, the number increases by 1: 0+1=+1, +1+1=+2,...



• For each move from right to left by 1, the number decreases by 1: $0-1=-1, -1-1=-2, \ldots$

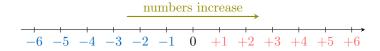


Definition Number line -

A number line is a straight line with markings at equal intervals to denote the numbers.

Ex: Find the value of x.

Answer:


• So, x = -2.

E ORDERING

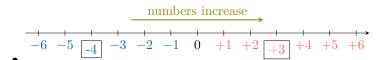
Discover: In the set of numbers, the order is defined as:

$$\dots < -3 < -2 < -1 < 0 < +1 < +2 < +3 < \dots$$

So, as you move along the number line from left to right, the numbers increase.

- As +3 is to the right of -5, -5 < +3. So, when one number is **positive** and the other is **negative**, the positive number is **greater**.
- As -2 is to the right of -4, -4 < -2. So, when both numbers are **negative**, the number closer to zero is **greater** (the number with the smaller absolute value is greater).
- As +6 is to the right of +4, +4 < +6. So, when both numbers are **positive**, the number further from zero is **greater** (the number with the greater absolute value is greater).

Method Compare two numbers


- When one number is **positive** and the other is **negative**, the positive number is **greater**.
- When both numbers are **negative**, the number closer to zero is **greater** (the number with the smaller absolute value is greater).
- When both numbers are **positive**, the number further from zero is **greater** (the number with the greater absolute value is greater).

Ex: Compare -4 and +3

Answer:

• As +3 is positive and -4 is negative, the positive number is greater than the negative number: -4 < +3

F MULTIPLICATION

Discover: Multiplication of two whole numbers is repeated addition: $3 \times 2 = 2 + 2 + 2 = 6$.

$$(+3) \times (+2) = 3 \times (+2)$$

= $(+2) + (+2) + (+2)$
= $+6$

So, a positive times a positive gives a positive.

• $(+) \times (-)$:

$$(+3) \times (-2) = 3 \times (-2)$$

= $(-2) + (-2) + (-2)$
= -6

$$(+3) \times (-2) = 3 \times \bigcirc$$

$$= \bigcirc$$

$$= \bigcirc$$

$$= -6$$

So, a positive times a negative gives a negative.

• $(-) \times (+)$: Multiplication is commutative, so the order doesn't matter.

$$(-2) \times (+3) = (+3) \times (-2)$$

= -6

So, a negative times a positive gives a negative.

• $(-) \times (-)$:

$$0 \times (-2) = 0\$(+3) + (-3)) \times (-2) = 0\$(+3) \times (-2)) + ((-3) \times (-2)) = 0$$
$$(-6) + ((-3) \times (-2)) = 0$$
$$(-3) \times (-2) = +6$$

So, a negative times a negative gives a positive.

Definition Multiplication -

- $(+) \times (+) = (+)$: a positive times a positive gives a positive.
- $(+) \times (-) = (-)$: a positive times a negative gives a negative.
- $(-) \times (+) = (-)$: a negative times a positive gives a negative.
- $(-) \times (-) = (+)$: a negative times a negative gives a positive.

Ex: Calculate $(+2) \times (-5)$

Answer:
$$(+2) \times (-5) = -10$$
 as $(+) \times (-) = (-)$

G DIVISION

Discover: Multiplication and division are inverse operations:

$$3 \times 2 = 12$$
, so $6 \div 3 = 2$

Now, let's look at division with negative numbers:

• (+) ÷ (+):

$$(+3) \times (+2) = +6$$
, so $(+6) \div (+3) = (+2)$

So, a positive divided by a positive gives a positive.

• $(+) \div (-)$:

$$(-3) \times (-2) = +6$$
, so $(+6) \div (-3) = (-2)$

So, a positive divided by a negative gives a negative.

• (-) ÷ (+):

$$(+3) \times (-2) = -6$$
, so $(-6) \div (+3) = (-2)$

So, a negative divided by a positive gives a negative.

• (-) ÷ (-):

$$(-3) \times (+2) = -6$$
, so $(-6) \div (-3) = (+2)$

So, a negative divided by a negative gives a positive.

Definition **Division** —

- $(+) \div (+) = (+)$:a **positive** divided by a **positive** gives a **positive**.
- $(+) \div (-) = (-)$: a **positive** divided by a **negative** gives a **negative**.
- $(-) \div (+) = (-)$: a negative divided by a positive gives a negative.
- $(-) \div (-) = (+)$: a negative divided by a negative gives a positive.

Ex: Calculate $(+10) \div (-5)$

Answer: $(+10) \div (-5) = -2$ as $(+) \div (-) = (-)$

