INTERESTS

A DEFINITIONS

A.1 FINDING THE INTEREST

Ex 1: Louis lends Hugo \$100. After one year, Hugo repays Louis \$110.

Find the interest paid.

10 \$

Answer: The interest paid is the difference between the amount repaid and the original amount lent:

 $\begin{aligned} \text{Interest} &= \text{Amount repaid} - \text{Original amount} \\ &= 110 - 100 \\ &= 10 \ \$ \end{aligned}$

Ex 2: Maria borrows \$200 from John. After one year, Maria repays John \$230. Find the interest paid.

30 \$

Answer: The interest paid is the difference between the amount repaid and the original amount lent:

 $\begin{aligned} \text{Interest} &= \text{Amount repaid} - \text{Original amount} \\ &= 230 - 200 \\ &= 30 \ \$ \end{aligned}$

Ex 3: Jack lends Sarah \$500. After one year, Sarah repays Jack \$525.

Find the interest paid.

25 \$

Answer: The interest paid is the difference between the amount repaid and the original amount lent:

 $\begin{aligned} \text{Interest} &= \text{Amount repaid} - \text{Original amount} \\ &= 525 - 500 \\ &= 25 \ \$ \end{aligned}$

Ex 4: A bank lends \$1000 to a customer. After one year, the customer repays the bank \$1080. Find the interest paid.

80 \$

Answer: The interest paid is the difference between the amount repaid and the original amount lent:

Interest = Amount repaid - Original amount = 1080 - 1000= 80 \$

A.2 FINDING THE TOTAL AMOUNT

Ex 5: A customer borrows \$2500 from a bank, with \$150 of interest.

Find the total amount the customer needs to repay the bank.

2650 \$

Answer: The total amount to be repaid is the sum of the original amount borrowed (the principal) and the interest:

Amount to repay = Principal + Interest = 2500 + 150 = 2650 \$

Ex 6: Maria borrows \$300 from John with \$30 of interest. Find the amount Maria needs to repay.

330 \$

Answer: The total amount to be repaid is the sum of the original amount borrowed (the principal) and the interest:

Amount to repay = Principal + Interest = 300 + 30= 330 \$

Ex 7: Jack lends Sarah \$500 with \$50 of interest. Find the total amount Sarah needs to repay Jack.

550 \$

Answer: The total amount to be repaid is the sum of the original amount borrowed (the principal) and the interest:

Amount to repay = Principal + Interest = 500 + 50= 550 \$

Ex 8: A bank lends \$1000 to a customer with \$80 of interest.

Find the total amount the customer needs to repay the bank.

1080 \$

Answer: The total amount to be repaid is the sum of the original amount borrowed (the principal) and the interest:

Amount to repay = Principal + Interest = 1000 + 80 = 1080 \$

A.3 FINDING THE PRINCIPAL

Ex 9: Emma repaid \$330 in total, including \$30 of interest. Find the original amount (principal) that Emma borrowed.

300 \$

Answer: The principal is the difference between the total amount repaid and the interest paid:

$$\begin{aligned} \text{Principal} &= \text{Amount repaid} - \text{Interest} \\ &= 330 - 30 \\ &= 300 \ \$ \end{aligned}$$

Ex 10: Lucas repaid \$550 in total, including \$50 of interest. Find the original amount (principal) that Lucas borrowed.

500 \$

Answer: The principal is the difference between the total amount repaid and the interest paid:

$$\begin{aligned} \text{Principal} &= \text{Amount repaid} - \text{Interest} \\ &= 550 - 50 \\ &= 500 \text{ \$} \end{aligned}$$

Ex 11: Sophia repaid \$1080 in total, including \$80 of interest.

Find the original amount (principal) that Sophia borrowed.

1000 \$

 ${\it Answer:}$ The principal is the difference between the total amount repaid and the interest paid:

$$\begin{aligned} \text{Principal} &= \text{Amount repaid} - \text{Interest} \\ &= 1080 - 80 \\ &= 1000 \;\$ \end{aligned}$$

Ex 12: Mia repaid \$750 in total, including \$150 of interest. Find the original amount (principal) that Mia borrowed.

600 | \$

Answer: The principal is the difference between the total amount repaid and the interest paid:

$$\begin{aligned} \text{Principal} &= \text{Amount repaid} - \text{Interest} \\ &= 750 - 150 \\ &= 600 \ \$ \end{aligned}$$

B SIMPLE INTEREST

B.1 FINDING THE INTEREST

Ex 13: Find the simple interest on a principal of \$500 at a rate of 3% per year over 5 years.

75

Answer.

Interest = Number of years
$$\times$$
 Percentage of the principal
= $5 \times 3\%$ of 500
= $5 \times \frac{3}{100} \times 500$
= 75 \$

Ex 14: Find the simple interest on a principal of \$1000 at a rate of 4% per year over 3 years.

120 \$

Answer:

Interest = Number of years
$$\times$$
 Percentage of the principal
= $3 \times 4\%$ of $1\,000$
= $3 \times \frac{4}{100} \times 1\,000$
= $120\,$ \$

Ex 15: Find the simple interest on a principal of \$750 at a rate of 5% per year over 2 years.

75 \$

Answer:

Interest = Number of years × Percentage of the principal =
$$2 \times 5\%$$
 of 750 = $2 \times \frac{5}{100} \times 750$ = 75%

Ex 16: Find the simple interest on a principal of \$1 200 at a rate of 6% per year over 4 years.

288 \$

Answer:

Interest = Number of years
$$\times$$
 Percentage of the principal
= $4 \times 6\%$ of $1\,200$
= $4 \times \frac{6}{100} \times 1\,200$
= 288 \$

B.2 FINDING THE INTEREST OVER MIXED TIME PERIODS

Ex 17: Find the simple interest on a principal of \$600 at a rate of 4% per year over 18 months.

36

Answer:

• Convert the time from months to years:

18 months =
$$\frac{18}{12}$$
 years
= 1.5 years

• Calculate the interest:

$$\begin{split} \text{Interest} &= \text{Number of years} \times \text{Percentage of the principal} \\ &= 1.5 \times 4\% \text{ of } 600 \\ &= 1.5 \times \frac{4}{100} \times 600 \\ &= 36 \text{ \$} \end{split}$$

Ex 18: Find the simple interest on a principal of \$700 at a rate of 5% per year over 180 days.

17.26 \$ (round at two decimal places)

Answer:

• Convert the time from days to years:

$$180 \text{ days} = \frac{180}{365} \text{ years}$$

 $\approx 0.493 \text{ years}$

• Calculate the interest:

Interest = Number of years × Percentage of the principal = $0.493 \times 5\%$ of 700 = $0.493 \times \frac{5}{100} \times 700$

Ex 19: Find the simple interest on a principal of \$800 at a rate of 4% per year over 9 months.

24 \$

Answer:

• Convert the time from months to years:

9 months =
$$\frac{9}{12}$$
 years = 0.75 years

• Calculate the interest:

Interest = Number of years
$$\times$$
 Percentage of the principal
= $0.75 \times 4\%$ of 800
= $0.75 \times \frac{4}{100} \times 800$
= 24 \$

Ex 20: Find the simple interest on a principal of \$1 200 at a rate of 4% per year over 2 years and 6 months.

120 \$

Answer:

• Convert the time from years and months to just years:

2 years 6 months =
$$2 + \frac{6}{12}$$
 years
= $2 + 0.5$ years
= 2.5 years

• Calculate the interest:

Interest = Number of years × Percentage of the principal =
$$2.5 \times 4\%$$
 of $1\,200$ = $2.5 \times \frac{4}{100} \times 1\,200$ = $120\,$ \$

B.3 FINDING THE TOTAL AMOUNT

Ex 21: Jack lends Sarah \$500 with simple interest over 3 years at a rate of 3% per year.

Find the total amount Sarah needs to repay Jack.

545 \$

Answer:

- The total amount to be repaid is the sum of the original amount borrowed (the principal) and the interest.
- Calculate the interest:

Interest = Number of years × Percentage of the principal $= 3 \times \frac{3}{100} \times 500$ = 45 \$

• Calculate the total amount to repay:

Amount to repay = Principal + Interest = 500 + 45= 545 \$

Ex 22: Emma borrows \$600 from a bank with simple interest over 4 years at a rate of 2.5% per year. Find the total amount Emma needs to repay the bank.

Answer:

- The total amount to be repaid is the sum of the original amount borrowed (the principal) and the interest.
- Calculate the interest:

Interest = Number of years × Percentage of the principal $= 4 \times \frac{2.5}{100} \times 600$

• Calculate the total amount to repay:

Amount to repay = Principal + Interest = 600 + 60= 660\$

Ex 23: Michael lends \$800 to a friend with simple interest over 2 years at a rate of 4% per year. Find the total amount the friend needs to repay Michael.

864 \$

Answer:

- The total amount to be repaid is the sum of the original amount borrowed (the principal) and the interest.
- Calculate the interest:

Interest = Number of years × Percentage of the principal $= 2 \times \frac{4}{100} \times 800$

• Calculate the total amount to repay:

Amount to repay = Principal + Interest = 800 + 64= 864 \$

Ex 24: Sophia borrows \$1 200 with simple interest over 5 years at a rate of 2.5% per year.

Find the total amount Sophia needs to repay.

1 350 \$

Answer:

- The total amount to be repaid is the sum of the original amount borrowed (the principal) and the interest.
- Calculate the interest:

Interest = Number of years × Percentage of the principal $= 5 \times \frac{2.5}{100} \times 1200$

• Calculate the total amount to repay:

= 150\$

Amount to repay = Principal + Interest = 1200 + 150= 1350 \$

C COMPOUND INTEREST

C.1 FINDING THE TOTAL AMOUNT USING A TABLE

Ex 25: \$1000 is placed in an account that earns 10% interest per annum (p.a.), and the interest is allowed to compound over three years. This means the account is earning 10% p.a. in compound interest.

Fill in the compound interest table:

Year	Amount	Compound interest
0	\$1 000	10% of \$1000 = \$100
1	\$1000 + \$100 = \$1100	10% of \$1100 = \$110
2	\$ 1210	121
3	\$ 1331	

Find the amount at 3 years.

1331 dollars

Answer:

Year	Amount	Compound interest
0	\$1 000	10% of \$1000 = \$100
1	\$1000 + \$100 = \$1100	10% of \$1100 = \$110
2	\$1100 + \$110 = \$1210	10% of \$1210 = \$121
3	$\$1\ 210 + \$121 = \$1\ 331$	

The amount at 3 years is \$1331.

Fill in the compound interest table:

	Year	Amount	Compound interest	
ĺ	0	\$3 000	20% of \$3000 = \$600	
	1	\$3000 + \$600 = \$3600	20% of \$3600 = \$720	
	2	\$ 4320	864	
	3	\$ 5184		

Find the amount at 3 years.

5184 dollars

Answer:

Year	Amount	Compound interest
0	\$3 000	20% of \$3000 = \$600
1	\$3000 + \$600 = \$3600	20% of \$3600 = \$720
2	\$3600 + \$720 = \$4320	20% of \$4320 = \$864
3	\$4320 + \$864 = \$5184	

The amount at 3 years is \$5 184.

Ex 27: \$1000 is placed in an account that earns 5% interest per annum (p.a.), and the interest is allowed to compound over two years.

Fill in the compound interest table:

Year	A	mount	Compound interest
0	,	\$1 000	50
1	\$	1050	52.5
2	\$	1102.5	

Find the amount after 2 years.

1102.5 dollars

Answer:

Year	Amount	Compound interest
0	\$1 000	5% of \$1000 = \$50
1	\$1000 + \$50 = \$1050	5% of \$1050 = \$52.5
2	\$1050 + \$52.5 = \$1102.5	—-

The amount after 2 years is \$1102.5.

C.2 FINDING THE TOTAL AMOUNT

Ex 28: Find the final amount on a principal of \$10 000 at a rate of 10% per year over 3 years compounded yearly.

13310 dollars

Answer:

• Method 1: Amount year by year

- Year 0: Initial amount = \$10000
- Year 1: $$10\,000 + 10\%$ of $10\,000 = $11\,000$
- Year 2: $$11\,000 + 10\%$ of $11\,000 = $12\,100$
- Year 3: \$12100 + 10% of 12100 = \$13310

So, the final amount after 3 years is \$13310.

• Method 2: Using the compound interest formula

$$A = P(1+r)^{t}$$

$$= 10000 \times (1+0.10)^{3}$$

$$= 10000 \times 1.1^{3}$$

$$= 13310$$

Thus, the final amount after 3 years is \$13310.

Ex 29: Find the final amount on a principal of \$200 000 at a rate of 5% per year over 3 years compounded yearly.

231525 dollars

Answer:

• Method 1: Amount year by year

- Year 0: Initial amount = \$200 000
- Year 1: $$200\,000 + 5\%$ of $200\,000 = $210\,000$
- Year 2: $$210\,000 + 5\%$ of $210\,000 = $220\,500$
- Year 3: \$220500 + 5% of 220500 = \$231525

So, the final amount after 3 years is \$231525.

• Method 2: Using the compound interest formula

$$A = P(1+r)^{t}$$

$$= 200 000 \times (1+0.05)^{3}$$

$$= 200 000 \times 1.157625$$

$$= 231 525$$

Thus, the final amount after 3 years is \$231525.

Ex 30: Find the final amount on a principal of \$5 000 at a rate of 8% per year over 2 years compounded yearly.

5832 dollars

Answer:

• Method 1: Amount year by year

- Year 0: Initial amount = \$5000
- Year 1: \$5000 + 8% of 5000 = \$5400
- Year 2: \$5400 + 8% of 5400 = \$5832

So, the final amount after 2 years is \$5832.

• Method 2: Using the compound interest formula

$$A = P(1+r)^{t}$$

$$= 5000 \times (1+0.08)^{2}$$

$$= 5000 \times 1.1664$$

$$= 5832$$

Thus, the final amount after 2 years is \$5832.

Ex 31: Find the final amount on a principal of \$5000 at a rate of 8% per year over 20 years compounded yearly (round to the nearest integer).

Answer: Using the compound interest formula,

$$A = P(1+r)^{t}$$

$$= 5000 \times (1+0.08)^{20}$$

$$\approx 23305$$

Thus, the final amount after 20 years is \$23305.

C.3 FINDING THE BEST OPTION OF INVESTMENT

Ex 32: You have \$8 000 to invest for 5 years and there are 2 possible options you have been offered:

- Option 1: Invest at 9% p.a. simple interest.
- Option 2: Invest at 8% p.a. compound interest.
- Calculate the amount accumulated at the end of the 5 years for option 1 (round to the nearest integer):

11600 dollars

• Calculate the amount accumulated at the end of the 5 years for option 2 (round to the nearest integer):

• Decide which option to take.

Option 2

Answer:

\bullet Option 1: Simple Interest

Use the simple interest formula:

$$A = (1 + t \times r) \times P$$
= $(1 + 5 \times 0.09) \times 8000$
= $(1 + 0.45) \times 8000$
= 1.45×8000
= 11600 dollars

Thus, the accumulated amount for option 1 after 5 years is \$11600.

• Option 2: Compound Interest

Use the compound interest formula:

$$A = (1+r)^t \times P$$
$$= (1+0.08)^5 \times 8000$$
$$\approx 1.4693 \times 8000$$
$$\approx 11755 \text{ dollars}$$

Thus, the accumulated amount for option 2 after 5 years is \$11755.

• Conclusion

Option 1 (simple interest): \$11 600 Option 2 (compound interest): \$11 755 Since option 2 gives a higher final amount, it is better to choose option 2 with compound interest.

Ex 33: You have \$20 000 to invest for 5 years and there are 2 possible options you have been offered:

- Option 1: Invest at 7% p.a. simple interest.
- Option 2: Invest at 6% p.a. compound interest.
- Calculate the amount accumulated at the end of the 5 years for option 1 (round to the nearest integer):

$$27000$$
 dollars

• Calculate the amount accumulated at the end of the 5 years for option 2 (round to the nearest integer):

$$26765$$
 dollars

• Decide which option to take.

Answer:

• Option 1: Simple Interest

$$A = (1 + t \times r) \times P$$
= $(1 + 5 \times 0.07) \times 20000$
= $(1 + 0.35) \times 20000$
= 1.35×20000
= 27000 dollars

• Option 2: Compound Interest

$$A = (1+r)^t \times P$$

= $(1+0.06)^5 \times 20000$
 $\approx 26765 \text{ dollars}$

• Conclusion

Option 1 (simple interest): \$27 000 Option 2 (compound interest): \$26 765 Since option 1 gives a higher final amount, it is better to choose option 1 with simple interest.

Ex 34: You have \$50 000 to invest for 30 years and there are 2 possible options you have been offered:

- Option 1: Invest at 10% p.a. simple interest.
- Option 2: Invest at 9% p.a. compound interest.
- Calculate the amount accumulated at the end of the 30 years for option 1 (round to the nearest integer):

• Calculate the amount accumulated at the end of the 30 years for option 2 (round to the nearest integer):

• Decide which option to take.

Option 2

Answer:

• Option 1: Simple Interest

$$A = (1 + t \times r) \times P$$
= $(1 + 30 \times 0.10) \times 50000$
= $(1 + 3.0) \times 50000$
= 4.0×50000
= 200000 dollars

• Option 2: Compound Interest

$$A = (1+r)^{t} \times P$$
= $(1+0.09)^{30} \times 50\,000$
 $\approx 13.2677 \times 50\,000$
 $\approx 663\,384 \text{ dollars}$

• Conclusion

Option 1 (simple interest): \$200 000 Option 2 (compound interest): \$663 384 Since option 2 gives a much higher final amount, it is better to choose option 2 with compound interest.

