A DEFINITION

A.1 COMPLETING A TABLE OF VALUES

Ex 1: For y = x + 3, fill in the table:

\boldsymbol{x}	-2	-1	0	1	2
y	1	2	3	4	5

Answer:

• For x = -2,

$$y = (-2) + 3$$
$$= 1$$

• For x = -1,

$$y = (-1) + 3$$
$$= 2$$

• For x = 0,

$$y = 0 + 3$$
$$= 3$$

• For x = 1,

$$y = 1 + 3$$
$$= 4$$

• For x=2,

$$y = 2 + 3$$
$$= 5$$

So the completed table is:

	\boldsymbol{x}	-2	-1	0	1	2
ĺ	y	1	2	3	4	5

Ex 2: For y = -2x + 1, fill in the table:

\boldsymbol{x}	-2	-1	0	1	2
y	5	3	1	-1	-3

Answer:

• For x = -2,

$$y = -2 \times (-2) + 1$$

= 4 + 1
= 5

• For x = -1,

$$y = -2 \times (-1) + 1$$

= 2 + 1
= 3

• For x = 0,

$$y = -2 \times 0 + 1$$
$$= 0 + 1$$
$$= 1$$

• For x = 1,

$$y = -2 \times 1 + 1$$
$$= -2 + 1$$
$$= -1$$

• For x=2,

$$y = -2 \times 2 + 1$$

= -4 + 1
= -3

So the completed table is:

x	-2	-1	0	1	2
y	5	3	1	-1	-3

Ex 3: For y = 3x - 5, fill in the table:

x	-2	-1	0	1	2
y	-11	-8	-5	-2	1

Answer:

• For x = -2,

$$y = 3 \times (-2) - 5$$

= -6 - 5
= -11

• For x = -1,

$$y = 3 \times (-1) - 5$$
$$= -3 - 5$$
$$= -8$$

• For x = 0,

$$y = 3 \times 0 - 5$$
$$= 0 - 5$$
$$= -5$$

• For x = 1,

$$y = 3 \times 1 - 5$$
$$= 3 - 5$$
$$= -2$$

• For x=2,

$$y = 3 \times 2 - 5$$
$$= 6 - 5$$
$$= 1$$

So the completed table is:

\boldsymbol{x}	-2	-1	0	1	2
y	-11	-8	-5	-2	1

Ex 4: For y = -2.5x - 2, fill in the table:

x	-2	-1	0	1	2
y	3	0.5	-2	-4.5	-7

Answer:

• For x = -2,

$$y = -2.5 \times (-2) - 2$$

= 5 - 2
= 3

• For
$$x = -1$$
,

$$y = -2.5 \times (-1) - 2$$

= 2.5 - 2
= 0.5

• For
$$x = 0$$
,

$$y = -2.5 \times 0 - 2$$

= 0 - 2
= -2

• For
$$x = 1$$
,

$$y = -2.5 \times 1 - 2$$

= -2.5 - 2
= -4.5

• For
$$x=2$$
,

$$y = -2.5 \times 2 - 2$$
$$= -5 - 2$$
$$= -7$$

So the completed table is:

\overline{x}	-2	-1	0	1	2
y	3	0.5	-2	-4.5	-7

Ex 5: For y = 0.5x + 1, fill in the table:

x	-2	-1	0	1	2
y	0	0.5	1	1.5	2

Answer:

• For
$$x = -2$$
,

$$y = 0.5 \times (-2) + 1$$

= -1 + 1
= 0

• For
$$x = -1$$
,

$$y = 0.5 \times (-1) + 1$$
$$= -0.5 + 1$$
$$= 0.5$$

• For
$$x = 0$$
,

$$y = 0.5 \times 0 + 1$$

= 0 + 1
= 1

• For
$$x = 1$$
,

$$y = 0.5 \times 1 + 1$$

= 0.5 + 1
= 1.5

• For
$$x=2$$
,

$$y = 0.5 \times 2 + 1$$

= 1 + 1
= 2

So the completed table is:

\boldsymbol{x}	-2	-1	0	1	2
y	0	0.5	1	1.5	2

A.2 GRAPHING A LINE FROM TWO POINTS

Ex 6: Here is a table of values for the line equation y = x - 1:

\boldsymbol{x}	0	2
y	-1	1

Plot the line.

Answer: Plot the points (0,-1) and (2,1). Then, draw the line passing through the two points.

Ex 7: Here is a table of values for the line equation y = 0.5x + 1:

x	0	2
y	1	2

Plot the line.

Answer: Plot the points (0,1) and (2,2). Then, draw the line passing through the two points.

Ex 8: Here is a table of values for the line equation y = -2x + 2:

x	0	2
y	2	-2

Plot the line.

Answer: Plot the points (0,2) and (2,-2). Then, draw the line passing through the two points.

A.3 FINDING COORDINATE POINTS

Ex 9: Find the coordinates of the point A on the line with the equation y = 2x + 1:

$$A(1, \boxed{3})$$

Answer:

• For x = 1,

$$y = 2 \times 1 + 1$$
$$= 3$$

• The coordinates of A are A(1, 3).

Ex 10: Find the coordinates of the point A on the line with the equation y = -x + 2:

$$A(1.5, \boxed{0.5})$$

Answer:

• For x = 1.5,

$$y = -1.5 + 2$$
$$= 0.5$$

• The coordinates of A are A(1.5, 0.5).

Ex 11: Find the coordinates of the point A on the line with the equation y = -2x + 1:

$$A(-1, \boxed{3})$$

Answer:

• For x = -1,

$$y = -2 \times -1 + 1$$
$$= 3$$

• The coordinates of A are A(-1, 3).

A.4 DETERMINING WHETHER A POINT IS ON A LINE

MCQ 12: Determine whether the point (3,6) lies on the line with the equation y = 2x + 1.

- \square Yes
- ⊠ No

Answer:

• For x = 3 in the equation y = 2x + 1:

$$y = 2 \times 3 + 1$$
$$= 7 \neq 6$$

• Therefore, the point (3, 6) does **not** lie on the line.

MCQ 13: Determine whether the point (4, -3) lies on the line with the equation y = -2x + 5.

- ⊠ Yes
- \square No

Answer:

• For x = 4 in the equation y = -2x + 5:

$$y = -2 \times 4 + 5$$
$$= -8 + 5$$
$$= -3$$

• Therefore, the point (4, -3) does lie on the line.

MCQ 14: Determine whether the point (2, 2) lies on the line with the equation y = x - 1.

□ Yes

⊠ No

Answer:

• For x = 2 in the equation y = x - 1:

$$y = 2 - 1$$
$$= 1 \neq 2$$

• Therefore, the point (2, 2) does **not** lie on the line.

MCQ 15: Determine whether the point (0, -2) lies on the line with the equation y = 3x - 2.

- ⊠ Yes
- □ No

Answer:

• For x = 0 in the equation y = 3x - 2:

$$y = 3 \times 0 - 2$$
$$= 0 - 2$$
$$= -2$$

• Therefore, the point (0, -2) does lie on the line.