A DEFINITION

A.1 EVALUATING LOGARITHMS

Ex 1: Evaluate log 100 =

Ex 2: Evaluate $\log 0.1 =$

Ex 3: Evaluate $\log\left(\frac{1}{100}\right) = \boxed{}$

Ex 4: Evaluate $\log \sqrt{10} =$

Ex 5: Evaluate $\log 1 =$

A.2 EVALUATING USING A CALCULATOR

Ex 6: Evaluate (round to 2 decimal places).

 $\log(2) \approx$

Ex 7: Evaluate (round to 2 decimal places).

 $\log(0.2) \approx$

Ex 8: Evaluate (round to 2 decimal places).

 $\log(2 \times 10^9) \approx$

A.3 SOLVING EXPONENTIAL EQUATIONS USING LOGARITHMS

Ex 9: Find x such that $8 = 10^x$.

 $x \approx$ (rounded to 3 decimal places)

Ex 10: Find x such that $0.4 = 10^x$.

 $x \approx$ (rounded to 3 decimal places)

Ex 11: Find x such that $250 = 10^x$.

 $x \approx$ (rounded to 3 decimal places)

A.4 SOLVING FOR x WHEN $\log(x)$ IS GIVEN

Ex 12: Find x such that $\log(x) = 3$.

x =

Ex 13: Find x such that $\log(x) = -1$.

$$x = \boxed{}$$

Ex 14: Find x such that $\log(x) = 0$.

 $x = \boxed{}$

Ex 15: Find x such that $\log(x) = 7$.

x =

B LAWS OF LOGARITHMS

B.1 WRITING AS A SINGLE LOGARITHM: LEVEL 1

Ex 16: Write as a single logarithm

$$\log(5) + \log(3) =$$

Ex 17: Write as a single logarithm in the form $\log k$:

$$\log(15) - \log(5) = \boxed{}$$

Ex 18: Write as a single logarithm in the form $\log k$:

$$\log(4) + \log\left(\frac{1}{2}\right) = \boxed{}$$

Ex 19: Write as a single logarithm in the form $\log k$:

$$\log(18) - \log(3) = \boxed{}$$

B.2 WRITING AS A SINGLE LOGARITHM: LEVEL 2

Ex 20: Write as a single logarithm in the form $\log k$:

$$\log(8) + 1 = \boxed{}$$

Ex 21: Write as a single logarithm in the form $\log k$:

$$\log(3) + 2 = \boxed{}$$

Ex 22: Write as a single logarithm in the form $\log k$:

$$2 - \log(25) = \boxed{}$$

Ex 23: Write as a single logarithm in the form $\log k$:

$$\log(200) - 2 =$$

B.3 WRITING AS A SINGLE LOGARITHM: LEVEL 3

Ex 24: Write as a single logarithm in the form $\log k$:

$$2\log(3) + 1 = \boxed{}$$

Ex 25: Write as a single logarithm in the form $\log k$:

$$3\log(2) - \log(4) = \boxed{}$$

Ex 26: Write as a single logarithm in the form $\log k$:

$$2\log(20) - 2 = \boxed{}$$

Ex 27: Write as a single logarithm in the form $\log k$:

$$2\log(30) - 1 = \boxed{}$$

C USING LOGARITHMS TO SOLVE EXPONENTIAL EQUATIONS

C.1 SOLVING EXPONENTIAL EQUATIONS: LEVEL 1

Ex 28: Solve $2^x = 7$ (give your answer to 3 decimal places).

Ex 29: Solve $3^x = 15$ (give your answer to 3 decimal places).

$$x =$$

Ex 30: Solve $5^x = 100$ (give your answer to 3 decimal places).

$$x =$$

Ex 31: Solve $6^x = 80$ (give your answer to 3 decimal places).

C.2 SOLVING EXPONENTIAL EQUATIONS: LEVEL 2

Ex 32: Solve $5 \cdot 2^x = 7$ (give your answer to 3 decimal places).

$$x =$$

Ex 33: Solve $-2^x = -10$ (give your answer to 3 decimal places).

$$x =$$

Ex 34: Solve $4 \cdot 3^x = 60$ (give your answer to 3 decimal places).

$$x =$$

Ex 35: Solve $-2 \cdot (0.5)^x = -4$ (give your answer to 3 decimal places).

$$x =$$

D APPLICATIONS OF LOGARITHMS

D.1 APPLYING OF LOGARITHMS IN SCIENCE

Ex 36: The pH scale in chemistry is pH = $-\log_{10}[H^+]$ where $[H^+]$ is the hydrogen ion concentration in moles per litre. The pH of a solution is 3.2. Find the hydrogen ion concentration $[H^+]$ (give your answer in scientific notation with 3 significant digits).

Ex 37: The Richter scale measures earthquake intensity using the formula $M = \log_{10} \left(\frac{I}{I_0} \right)$, where M is the magnitude, I is the intensity of the earthquake, and I_0 is the intensity of a standard earthquake.

An earthquake has a magnitude of 4.5 on the Richter scale. Find the intensity ratio $\frac{I}{I_0}$ (give your answer in scientific notation with 3 significant digits).

$$\frac{I}{I_0} = \boxed{} \times \boxed{}$$

Ex 38: The intensity of sound is measured in decibels (dB) using the formula $L = 10 \log_{10} \left(\frac{I}{I_0} \right)$, where L is the sound level in decibels, I is the intensity of the sound, and I_0 is the reference intensity (threshold of human hearing).

A sound has a level of 75 decibels. Find the intensity ratio $\frac{I}{I_0}$ (give your answer in scientific notation with 3 significant digits).

$$\frac{I}{I_0} = \boxed{} \times \boxed{}$$

E GRAPHS OF LOGARITHMIC FUNCTIONS

E.1 FINDING DOMAINS

MCQ 39: Find the domain of the function $f: x \mapsto \log(x-4)$.

 \square \mathbb{R}

 $\Box [-4,+\infty)$

 \Box $(4,+\infty)$

 $\Box (-\infty,4)$

MCQ 40: Find the domain of the function $f: x \mapsto \log(2-x)$.

- \square \mathbb{R}
- $\Box [-2, +\infty)$
- \square $(2,+\infty)$
- \Box $(-\infty,2)$

MCQ 41: Find the domain of the function $f: x \mapsto \log(2x-6)$.

- \square \mathbb{R}
- \square $[3, +\infty)$
- \square $(3,+\infty)$
- \Box $(-\infty,3)$

MCQ 42: Find the domain of the function $f: x \mapsto \log(9-3x)$.

- \square \mathbb{R}
- \square $[3, +\infty)$
- \square $(3, +\infty)$
- \Box $(-\infty,3)$

E.2 CALCULATING f(x)

Ex 43: For $f: x \mapsto 3\log(x)$, find in simplest form:

- 1. $f(1) = \Box$
- 2. $f(10) = \Box$

Ex 44: For $f: x \mapsto \frac{1}{1 + \log(x)}$, find in simplest form:

- 1. $f(1) = \boxed{}$
- 2. f(10) =

Ex 45: For $f: x \mapsto x \log(x+1)$, find in simplest form:

- 1. $f(0) = \Box$
- 2. f(1) =