LOGARITHMS

A DEFINITION

A.1 EVALUATING LOGARITHMS

Ex 1: Evaluate $\log 100 = 2$.

Answer:
$$\log(100) = \log(10^2)$$

= 2

Ex 2: Evaluate $\log 0.1 = \boxed{-1}$.

Answer:
$$\log(0.1) = \log(10^{-1})$$

= -1

Ex 3: Evaluate $\log\left(\frac{1}{100}\right) = \boxed{-2}$.

Answer:
$$\log\left(\frac{1}{100}\right) = \log\left(\frac{1}{10^2}\right)$$

= $\log\left(10^{-2}\right)$
= -2

Ex 4: Evaluate $\log \sqrt{10} = \boxed{0.5}$

Answer:
$$\log(\sqrt{10}) = \log(10^{0.5})$$

= 0.5

Ex 5: Evaluate $\log 1 = 0$.

Answer:
$$\log(1) = \log(10^0)$$

= 0

A.2 EVALUATING USING A CALCULATOR

Ex 6: Evaluate (round to 2 decimal places).

$$\log(2) \approx \boxed{0.30}$$

Answer: By entering $\log(2)$ and pressing the equal button, the calculator displays: 0.30103.So, $\log(2) \approx 0.30$ (rounded to two decimal places).

Ex 7: Evaluate (round to 2 decimal places).

$$\log(0.2) \approx \boxed{-0.70}$$

Answer: By entering log(0.2) and pressing the equal button, the calculator displays: -0.69897.

So, $\log(0.2) \approx -0.70$ (rounded to two decimal places).

Ex 8: Evaluate (round to 2 decimal places).

$$\log(2\times10^9)\approx \boxed{9.30}$$

Answer: By entering $\log(2 \times 10^9)$ and pressing the equal button, the calculator displays: 9.30103.

So, $\log(2 \times 10^9) \approx 9.30$ (rounded to two decimal places).

A.3 SOLVING EXPONENTIAL EQUATIONS USING LOGARITHMS

Ex 9: Find x such that $8 = 10^x$.

$$x \approx 0.903$$
 (rounded to 3 decimal places)

Answer: To solve $8 = 10^x$, take the logarithm (base 10) of both sides:

$$8 = 10^{x}$$
$$\log(8) = \log(10^{x})$$
$$\log(8) = x$$
$$x \approx 0.903$$

So, $x \approx 0.903$ (rounded to 3 decimal places).

Ex 10: Find x such that $0.4 = 10^x$. $x \approx -0.398$ (rounded to 3 decimal places)

Answer: To solve $0.4=10^x$, take the logarithm (base 10) of both sides:

$$0.4 = 10^{x}$$
$$\log(0.4) = \log(10^{x})$$
$$\log(0.4) = x$$
$$x \approx -0.398$$

So, $x \approx -0.398$ (rounded to 3 decimal places).

Ex 11: Find x such that $250 = 10^x$. $x \approx 2.398$ (rounded to 3 decimal places)

Answer: To solve $250 = 10^x$, take the logarithm (base 10) of both sides:

$$250 = 10^{x}$$
$$\log(250) = \log(10^{x})$$
$$\log(250) = x$$
$$x \approx 2.398$$

So, $x \approx 2.398$ (rounded to 3 decimal places).

A.4 SOLVING FOR x WHEN $\log(x)$ IS GIVEN

Ex 12: Find x such that $\log(x) = 3$.

$$x = \boxed{1000}$$

Answer: Take 10 on both sides:

$$\log(x) = 3$$
$$10^{\log(x)} = 10^3$$
$$x = 10^3$$
$$x = 1000$$

Ex 13: Find x such that $\log(x) = -1$.

$$x = 0.1$$

Answer: Take 10 on both sides:

$$\log(x) = -1$$

$$10^{\log(x)} = 10^{-1}$$

$$x = 10^{-1}$$

$$x = 0.1$$

Ex 14: Find
$$x$$
 such that $\log(x) = 0$.

$$x = \boxed{1}$$

Answer: Take 10 on both sides:

$$\log(x) = 0$$
$$10^{\log(x)} = 10^{0}$$
$$x = 10^{0}$$
$$x = 1$$

Ex 15: Find x such that $\log(x) = 7$. $x = \boxed{10000000}$

Answer: Take 10 on both sides:

$$\log(x) = 7$$

$$10^{\log(x)} = 10^{7}$$

$$x = 10^{7}$$

$$x = 100000000$$

B LAWS OF LOGARITHMS

B.1 WRITING AS A SINGLE LOGARITHM: LEVEL 1

Ex 16: Write as a single logarithm

$$\log(5) + \log(3) = \log(15)$$

Answer:
$$\log(5) + \log(3) = \log(5 \times 3)$$

= $\log 15$

Ex 17: Write as a single logarithm in the form $\log k$:

$$\log(15) - \log(5) = \log(3)$$

Answer:
$$\log(15) - \log(5) = \log\left(\frac{15}{5}\right)$$

= $\log(3)$

Ex 18: Write as a single logarithm in the form $\log k$:

$$\log(4) + \log\left(\frac{1}{2}\right) = \boxed{\log(2)}$$

Answer:
$$\log(4) + \log\left(\frac{1}{2}\right) = \log\left(4 \times \frac{1}{2}\right)$$

= $\log(2)$

Ex 19: Write as a single logarithm in the form $\log k$:

$$\log(18) - \log(3) = \log(6)$$

Answer:
$$\log(18) - \log(3) = \log\left(\frac{18}{3}\right)$$

= $\log(6)$

B.2 WRITING AS A SINGLE LOGARITHM: LEVEL 2

Ex 20: Write as a single logarithm in the form $\log k$:

$$\log(8) + 1 = \log(80)$$

Answer:
$$\log(8) + 1 = \log(8) + \log(10)$$

= $\log(8 \times 10)$
= $\log(80)$

Ex 21: Write as a single logarithm in the form $\log k$:

$$\log(3) + 2 = \log(300)$$

Answer:
$$\log(3) + 2 = \log(3) + \log(10^2)$$

= $\log(3) + \log(100)$
= $\log(3 \times 100)$
= $\log(300)$

Ex 22: Write as a single logarithm in the form $\log k$:

$$2 - \log(25) = \log(4)$$

Answer:
$$2 - \log(25) = \log(10^2) - \log(25)$$

= $\log\left(\frac{100}{25}\right)$
= $\log(4)$

Ex 23: Write as a single logarithm in the form $\log k$:

$$\log(200) - 2 = \log(2)$$

Answer:
$$\log(200) - 2 = \log(200) - \log(10^2)$$

= $\log\left(\frac{200}{100}\right)$
= $\log(2)$

B.3 WRITING AS A SINGLE LOGARITHM: LEVEL 3

Ex 24: Write as a single logarithm in the form $\log k$:

$$2\log(3) + 1 = \log(90)$$

Answer:
$$2\log(3) + 1 = \log(3^2) + \log(10^1)$$

= $\log(9) + \log(10)$
= $\log(9 \times 10)$
= $\log(90)$

Ex 25: Write as a single logarithm in the form $\log k$:

$$3\log(2) - \log(4) = \log(2)$$

Answer:
$$3\log(2) - \log(4) = \log(2^3) - \log(4)$$

= $\log(8) - \log(4)$
= $\log\left(\frac{8}{4}\right)$
= $\log(2)$

Ex 26: Write as a single logarithm in the form $\log k$:

$$2\log(20) - 2 = \log(4)$$

Answer:
$$2 \log(20) - 2 = \log(20^2) - \log(10^2)$$

= $\log(400) - \log(100)$
= $\log\left(\frac{400}{100}\right)$
= $\log(4)$

Ex 27: Write as a single logarithm in the form $\log k$:

$$2\log(30) - 1 = \boxed{\log(90)}$$

Answer:
$$2\log(30) - 1 = \log(30^2) - \log(10^1)$$

= $\log(900) - \log(10)$
= $\log\left(\frac{900}{10}\right)$
= $\log(90)$

C USING LOGARITHMS TO SOLVE EXPONENTIAL EQUATIONS

C.1 SOLVING EXPONENTIAL EQUATIONS: LEVEL 1

Ex 28: Solve $2^x = 7$ (give your answer to 3 decimal places).

$$x = 2.807$$

Answer:

$$2^{x} = 7$$

$$\log(2^{x}) = \log 7 \quad \text{(taking log of both sides)}$$

$$x \log 2 = \log 7 \quad \text{(power rule)}$$

$$x = \frac{\log 7}{\log 2} \quad \text{(dividing both sides by log 2)}$$

$$x \approx 2.807 \quad \text{(using calculator)}$$

Ex 29: Solve $3^x = 15$ (give your answer to 3 decimal places).

$$x = 2.465$$

Answer:

$$3^x = 15$$
 $\log(3^x) = \log 15$ (taking log of both sides)
 $x \log 3 = \log 15$ (power rule)
$$x = \frac{\log 15}{\log 3}$$
 (dividing both sides by $\log 3$)
$$x \approx 2.465$$
 (using calculator)

Ex 30: Solve $5^x = 100$ (give your answer to 3 decimal places).

$$x = 2.861$$

Answer:

$$5^x = 100$$
 $\log(5^x) = \log 100$ (taking log of both sides)
 $x \log 5 = \log 100$ (power rule)
$$x = \frac{\log 100}{\log 5}$$
 (dividing both sides by $\log 5$)
 $x \approx 2.861$ (using calculator)

Ex 31: Solve $6^x = 80$ (give your answer to 3 decimal places).

$$x = 2.446$$

Answer:

$$6^x = 80$$
 $\log(6^x) = \log 80$ (taking log of both sides)
 $x \log 6 = \log 80$ (power rule)
$$x = \frac{\log 80}{\log 6}$$
 (dividing both sides by $\log 6$)
$$x \approx 2.446$$
 (using calculator)

C.2 SOLVING EXPONENTIAL EQUATIONS: LEVEL 2

Ex 32: Solve $5 \cdot 2^x = 7$ (give your answer to 3 decimal places).

$$x = 0.485$$

Answer:

$$5 \cdot 2^{x} = 7$$

$$2^{x} = \frac{7}{5} \qquad \text{(dividing both sides by 5)}$$

$$\log(2^{x}) = \log\left(\frac{7}{5}\right) \quad \text{(taking log of both sides)}$$

$$x \log 2 = \log\left(\frac{7}{5}\right) \quad \text{(power rule)}$$

$$x = \frac{\log\left(\frac{7}{5}\right)}{\log 2} \quad \text{(dividing both sides by log 2)}$$

$$x \approx 0.485 \quad \text{(using calculator)}$$

Ex 33: Solve $-2^x = -10$ (give your answer to 3 decimal places).

$$x = 3.322$$

Answer:

$$-2^{x} = -10$$

$$2^{x} = 10$$
 (dividing both sides by -1)
$$\log(2^{x}) = \log 10$$
 (taking log of both sides)
$$x \log 2 = \log 10$$
 (power rule)
$$x = \frac{\log 10}{\log 2}$$
 (dividing both sides by log 2)
$$x \approx 3.322$$
 (using calculator)

Ex 34: Solve $4 \cdot 3^x = 60$ (give your answer to 3 decimal places).

$$x = 2.465$$

Answer:

$$4 \cdot 3^{x} = 60$$

$$3^{x} = \frac{60}{4}$$
 (dividing both sides by 4)
$$3^{x} = 15$$

$$\log(3^{x}) = \log 15$$
 (taking log of both sides)
$$x \log 3 = \log 15$$
 (power rule)
$$x = \frac{\log 15}{\log 3}$$
 (dividing both sides by log 3)
$$x \approx 2.465$$
 (using calculator)

Ex 35: Solve $-2 \cdot (0.5)^x = -4$ (give your answer to 3 decimal places).

$$x = \boxed{-1.000}$$

Answer:

$$-2 \cdot (0.5)^x = -4$$

$$(0.5)^x = \frac{-4}{-2}$$
 (dividing both sides by -2)
$$(0.5)^x = 2$$

$$\log((0.5)^x) = \log(2)$$

$$x \cdot \log(0.5) = \log(2)$$

$$x = \frac{\log(2)}{\log(0.5)}$$

$$x = -1$$

So, x = -1.

D APPLICATIONS OF LOGARITHMS

D.1 APPLYING OF LOGARITHMS IN SCIENCE

Ex 36: The pH scale in chemistry is pH = $-\log_{10}[H^+]$ where $[H^+]$ is the hydrogen ion concentration in moles per litre. The pH of a solution is 3.2. Find the hydrogen ion concentration $[H^+]$ (give your answer in scientific notation with 3 significant digits).

$$6.31 \times 10^{-4} \mod L$$

Answer: We know:

$$\begin{aligned} \text{pH} &= -\log_{10}[H^+] \\ 3.2 &= -\log_{10}[H^+] \\ -3.2 &= \log_{10}[H^+] \end{aligned} & \text{(substituting the value)} \\ 10^{-3.2} &= 10^{\log_{10}[H^+]} \\ \text{(exponentiating both sides)} \\ 10^{-3,2} &= [H^+] \\ \text{(10}^{\log_{10} x} &= x) \\ [H^+] &\approx 0.00063096 \end{aligned} & \text{(using calculator)} \end{aligned}$$

Ex 37: The Richter scale measures earthquake intensity using the formula $M = \log_{10} \left(\frac{I}{I_0} \right)$, where M is the magnitude, I is the intensity of the earthquake, and I_0 is the intensity of a standard earthquake.

An earthquake has a magnitude of 4.5 on the Richter scale. Find the intensity ratio $\frac{I}{I_0}$ (give your answer in scientific notation with 3 significant digits).

$$\frac{I}{I_0} = 3.16 \times 10^4$$

Answer: We know:

$$\begin{split} M &= \log_{10} \left(\frac{I}{I_0} \right) \\ 4.5 &= \log_{10} \left(\frac{I}{I_0} \right) \quad \text{(substituting the value)} \\ 10^{4.5} &= 10^{\log_{10} \left(\frac{I}{I_0} \right)} \quad \text{(exponentiating both sides)} \\ 10^{4.5} &= \frac{I}{I_0} \qquad (10^{\log_{10} x} = x) \\ \frac{I}{I_0} &\approx 31622.7766 \quad \text{(using calculator)} \\ \frac{I}{I_0} &\approx 3.16 \times 10^4 \quad \text{(in scientific notation with 3 significant digits)} \end{split}$$

Ex 38: The intensity of sound is measured in decibels (dB) using the formula $L = 10 \log_{10} \left(\frac{I}{I_0}\right)$, where L is the sound level in decibels, I is the intensity of the sound, and I_0 is the reference intensity (threshold of human hearing).

A sound has a level of 75 decibels. Find the intensity ratio $\frac{I}{I_0}$ (give your answer in scientific notation with 3 significant digits).

$$\frac{I}{I_0} = \boxed{3.16} \times \boxed{10^7}$$

Answer: We know:

$$L = 10 \log_{10} \left(\frac{I}{I_0} \right)$$

$$75 = 10 \log_{10} \left(\frac{I}{I_0} \right) \quad \text{(substituting the value)}$$

$$7.5 = \log_{10} \left(\frac{I}{I_0} \right) \quad \text{(dividing both sides by 10)}$$

$$10^{7.5} = 10^{\log_{10} \left(\frac{I}{I_0} \right)} \quad \text{(exponentiating both sides)}$$

$$10^{7.5} = \frac{I}{I_0} \quad \text{(}10^{\log_{10} x} = x\text{)}$$

$$\frac{I}{I_0} \approx 3162277.66 \quad \text{(using calculator)}$$

$$\frac{I}{I_0} \approx 3.16 \times 10^7 \quad \text{(in scientific notation with 3 significant digits)}$$

E GRAPHS OF LOGARITHMIC FUNCTIONS

E.1 FINDING DOMAINS

MCQ 39: Find the domain of the function $f: x \mapsto \log(x-4)$.

 $[H^+] \approx 6.31 \times 10^{-4} \text{ mol/L}$

(in scientific notation with 3 significant digits) \square \mathbb{R}

 $\Box [-4, +\infty)$

 $\boxtimes (4, +\infty)$

 \Box $(-\infty,4)$

Answer: The function $f(x) = \log(x - 4)$ is defined only when the argument of the logarithm is positive, i.e., when x - 4 > 0. Solving this inequality:

$$x-4>0$$

 $x>4$ (adding 4 to both sides)

Therefore, the function is defined for x > 4, so the domain is $(4, +\infty)$.

MCQ 40: Find the domain of the function $f: x \mapsto \log(2-x)$.

 \square \mathbb{R}

 $\Box [-2, +\infty)$

 \Box $(2,+\infty)$

 $\boxtimes (-\infty, 2)$

Answer: The function $f(x) = \log(2-x)$ is defined only when the argument of the logarithm is positive, i.e., when 2-x>0. Solving this inequality:

2 - x > 0

-x > -2 (subtracting 2 from both sides)

x < 2 (multiplying both sides by -1, reversing the inequality) a_{nswer} :

Therefore, the function is defined for x < 2, so the domain is $(-\infty, 2)$.

MCQ 41: Find the domain of the function $f: x \mapsto \log(2x-6)$.

 $\sqcap \mathbb{R}$

 \square $[3, +\infty)$

 \boxtimes $(3, +\infty)$

 \Box $(-\infty,3)$

Answer: The function $f(x) = \log(2x - 6)$ is defined only when the argument of the logarithm is positive, i.e., when 2x - 6 > 0. Solving this inequality:

$$2x - 6 > 0$$

2x > 6 (adding 6 to both sides)

x > 3 (dividing both sides by 2)

Therefore, the function is defined for x > 3, so the domain is $(3, +\infty)$. The correct answer is option (c).

MCQ 42: Find the domain of the function $f: x \mapsto \log(9-3x)$.

 \square \mathbb{R}

 \square $[3, +\infty)$

 \square $(3,+\infty)$

 $\boxtimes (-\infty, 3)$

Answer: The function $f(x) = \log(9 - 3x)$ is defined only when the argument of the logarithm is positive, i.e., when 9 - 3x > 0. Solving this inequality:

9 - 3x > 0

-3x > -9 (subtracting 9 from both sides)

x < 3 (dividing both sides by -3, reversing the inequality)

Therefore, the function is defined for x < 3, so the domain is $(-\infty, 3)$.

E.2 CALCULATING f(x)

Ex 43: For $f: x \mapsto 3\log(x)$, find in simplest form:

1. $f(1) = \boxed{0}$

2. $f(10) = \boxed{3}$

Answer:

1. $f(1) = 3 \log(1)$ = $3 \cdot 0$ (since $\log 1 = 0$) = 0

2.
$$f(10) = 3 \log(10)$$

= $3 \cdot 1$ (since $\log 10 = 1$)
= 3

Ex 44: For $f: x \mapsto \frac{1}{1 + \log(x)}$, find in simplest form:

1. $f(1) = \boxed{1}$

2.
$$f(10) = \boxed{\frac{1}{2}}$$

1. $f(1) = \frac{1}{1 + \log(1)}$

 $= \frac{1}{1+0} \quad \text{(since log 1 = 0)}$

2. $f(10) = \frac{1}{1 + \log(10)}$ = $\frac{1}{1+1}$ (since $\log 10 = 1$) = $\frac{1}{2}$

Ex 45: For $f: x \mapsto x \log(x+1)$, find in simplest form:

1. $f(0) = \boxed{0}$

2. $f(1) = \log(2)$

Answer:

1. $f(0) = 0 \log(0+1)$

 $= 0 \cdot \log(1)$

 $=0\cdot0$

=0

2. $f(1) = 1 \log(1+1)$

 $=1 \cdot \log(2)$

 $=\log(2)$