
MACLAURIN SERIES

Many complex functions, especially transcendental functions like sin(x) and ex, can be difficult to evaluate without a
calculator. However, we can approximate these functions using something simpler: polynomials. This is the central idea
behind Maclaurin series.
By matching a function’s value and all its derivatives at a single point, x = 0, with those of a power series, we obtain the
Maclaurin series of the function. The partial sums of this series are polynomials that approximate the function near x = 0,
and on an interval of convergence the infinite series can even give exact equality. This chapter introduces the method for
constructing these polynomial approximations, presents the standard series you must know, and explores their applications.

A MACLAURIN SERIES

From Approximation to Equality: Building a Polynomial The idea of a Maclaurin series is built upon the familiar
concept of linear approximation, which we can improve by adding more terms so that higher-order derivatives match at
x = 0.

• Linear Approximation (Degree 1): Near x = 0, the best linear approximation to f(x) is the tangent line at that
point:

f(x) ≈ f(0) + f ′(0)x.

This is the first Maclaurin approximation.
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• Quadratic Approximation (Degree 2): To get a better approximation near x = 0, we add a quadratic term and
choose its coefficient so that the second derivative of the approximation also matches that of the function at x = 0:

f(x) ≈ f(0) + f ′(0)x+
f ′′(0)

2!
x2.
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• Polynomial Approximation (Degree n): Continuing this process, a Maclaurin polynomial of degree n matches
the first n derivatives of the function at x = 0:

f(x) ≈ f(0) + f ′(0)x+
f ′′(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn.

As n increases, the polynomial “hugs” the function more closely near x = 0.
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• The Limit: The Maclaurin Series. When we let the degree of the polynomial go to infinity and the resulting
infinite series converges to f(x) (for x in some interval around 0), the approximation becomes an exact equality there.
This infinite series is the Maclaurin series:

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f (3)(0)

3!
x3 + . . .

or, in compact form,

f(x) =

∞∑
k=0

f (k)(0)

k!
xk.
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Definition Maclaurin Series
The Maclaurin series of a function f(x) that is infinitely differentiable at x = 0 is the power series

f(x) =

∞∑
k=0

f (k)(0)

k!
xk

= f(0) + f ′(0)x+
f ′′(0)

2!
x2 + . . .

Whenever this infinite series converges to f(x) for x in some interval around 0, we say that f is represented there by
its Maclaurin series. The set of values of x for which the series converges to the function value is called the interval
of convergence.

Method Finding a Maclaurin Series

To find the Maclaurin series for a function f(x):

1. Differentiate repeatedly: Find the first few derivatives of the function: f ′(x), f ′′(x), f ′′′(x), . . . until a clear
pattern emerges.

2. Evaluate at x = 0: Calculate the value of the function and each derivative at x = 0: f(0), f ′(0), f ′′(0), . . .

3. Construct the series: Substitute these values into the Maclaurin series formula

f(x) =

∞∑
k=0

f (k)(0)

k!
xk.

Ex: Find the Maclaurin series for the function f(x) = ex.

Answer: We follow the three-step method.

1. Differentiate: f(x) = ex =⇒ f (k)(x) = ex for all k ≥ 0.

2. Evaluate at x = 0: f (k)(0) = e0 = 1 for all k.

3. Construct the series:

ex =
f(0)

0!
x0 +

f ′(0)

1!
x1 +

f ′′(0)

2!
x2 + . . .

=
1

0!
+

1

1!
x+

1

2!
x2 +

1

3!
x3 + . . .

= 1 + x+
x2

2
+

x3

6
+ . . .

=

∞∑
k=0

xk

k!
.

Proposition Standard Maclaurin Series

• ex =
∑∞

k=0

xk

k!
= 1 + x+

x2

2!
+ . . . for x ∈ R

• ln(1 + x) =
∑∞

k=1(−1)k−1
xk

k
= x− x2

2
+

x3

3
− . . . for |x| < 1

• sin(x) =
∑∞

k=0(−1)k
x2k+1

(2k + 1)!
= x− x3

3!
+

x5

5!
− . . . for x ∈ R

• cos(x) =
∑∞

k=0(−1)k
x2k

(2k)!
= 1− x2

2!
+

x4

4!
− . . . for x ∈ R

• arctan(x) =
∑∞

k=0

(−1)kx2k+1

2k + 1
= x− x3

3
+

x5

5
− . . . for |x| ≤ 1

• (1 + x)p = 1 + px+
p(p− 1)

2!
x2 +

p(p− 1)(p− 2)

3!
x3 + . . . for |x| < 1 (for any real constant p)

The following series are fundamental and are provided in the formula booklet.
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B MACLAURIN POLYNOMIALS FOR APPROXIMATION

Definition Maclaurin Polynomial

A Maclaurin polynomial of degree n, denoted Pn(x), is the finite sum of the first n + 1 terms of the Maclaurin
series, used to approximate the function near x = 0:

Pn(x) =

n∑
k=0

f (k)(0)

k!
xk = f(0) + f ′(0)x+

f ′′(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn.

Ex: Find the Maclaurin polynomial of degree 4 for the function f(x) = ex and use it to approximate e0.1.

Answer: From the previous example, the Maclaurin series for ex is

1 + x+
x2

2!
+

x3

3!
+

x4

4!
+ . . .

The Maclaurin polynomial of degree 4 is:

P4(x) = 1 + x+
x2

2
+

x3

6
+

x4

24
.

To approximate e0.1, we calculate P4(0.1):

e0.1 ≈ 1 + 0.1 +
(0.1)2

2
+

(0.1)3

6
+

(0.1)4

24
≈ 1 + 0.1 + 0.005 + 0.000166 . . .+ 0.000004 . . . ≈ 1.10517.

C SUBSTITUTION AND DIFFERENTIATION/INTEGRATION TERM-BY-TERM

A powerful technique is to obtain new series from ones we already know (such as the geometric series), without having to
use the derivative formula from scratch every time.

Method Substitution
We can find the series for a composite function f(g(x)) by taking the series for f(u) and substituting u = g(x), then
adjusting the interval of convergence accordingly.

Ex: Starting with the geometric series
1

1− u
=
∑∞

k=0 u
k for |u| < 1, find the Maclaurin series for

1

1 + x
.

Answer: We use the geometric series formula and substitute u = −x. The condition |u| < 1 becomes | − x| < 1, which is
equivalent to |x| < 1.

1

1− u
=
∞∑
k=0

uk

1

1− (−x)
=

∞∑
k=0

(−x)k (letting u = −x)

1

1 + x
=

∞∑
k=0

(−1)kxk

1

1 + x
= 1− x+ x2 − x3 + . . . for |x| < 1.

Method Differentiation and Integration
We can differentiate or integrate a known Maclaurin series term-by-term within its interval of convergence to find the
series for its derivative or integral.

Ex: Starting with the series
1

1 + x
=
∑∞

k=0(−1)kxk for |x| < 1, find the Maclaurin series for ln(1 + x).
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Answer: We know that
∫ u

0

1

1 + x
dx = [ln(1 + x)]u0 = ln(1 + u). We integrate the series term-by-term (valid for |u| < 1):

1

1 + x
= 1− x+ x2 − x3 + . . .∫ u

0

1

1 + x
dx =

∫ u

0

(
1− x+ x2 − x3 + . . .

)
dx

ln(1 + u) =

∫ u

0

1 dx−
∫ u

0

x dx+

∫ u

0

x2 dx−
∫ u

0

x3 dx+ . . .

ln(1 + u) = [x]
u
0 −

[
x2

2

]u
0

+

[
x3

3

]u
0

−
[
x4

4

]u
0

+ . . .

ln(1 + u) = u− u2

2
+

u3

3
− u4

4
+ . . .

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+ . . . (replacing u with x)

ln(1 + x) =

∞∑
k=1

(−1)k−1x
k

k
, |x| < 1.

Ex: Starting with the geometric series
1

1− x
=
∑∞

k=0 x
k for |x| < 1, find the Maclaurin series for

1

(1− x)2
.

Answer: We know that
d

dx

(
1

1− x

)
=

1

(1− x)2
. We differentiate the series term-by-term (valid for |x| < 1):

1

1− x
= 1 + x+ x2 + x3 + x4 + . . .

d

dx

(
1

1− x

)
=

d

dx

(
1 + x+ x2 + x3 + x4 + . . .

)
1

(1− x)2
=

d

dx
(1) +

d

dx
(x) +

d

dx

(
x2
)
+

d

dx

(
x3
)
+

d

dx

(
x4
)
+ . . .

1

(1− x)2
= 0 + 1 + 2x+ 3x2 + 4x3 + . . .

1

(1− x)2
=

∞∑
k=0

(k + 1)xk, |x| < 1.

D LINEARITY OF MACLAURIN SERIES

Maclaurin series behave like polynomials: they can be added, subtracted, and multiplied by constants term-by-term. The
resulting series will converge on the intersection of the intervals of convergence of the individual series.

Proposition Linearity Property

If the Maclaurin series for f(x) and g(x) are known, and c is a constant, then:

• Sum/Difference: The series for f(x)± g(x) is the term-by-term sum/difference of their respective series.

• Scalar Multiple: The series for c · f(x) is the series for f(x) with each term multiplied by c.

Ex: Find the Maclaurin series for f(x) = cosh(x) up to the term in x4, using the series for ex and e−x. (Recall that

cosh(x) =
ex + e−x

2
.)

Answer: First, we write out the series for ex and find the series for e−x by substitution:

ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+ . . .

e−x = 1− x+
x2

2!
− x3

3!
+

x4

4!
− . . .

Now, we add the two series together. Notice that the odd-powered terms cancel out:

ex + e−x = (1 + 1) + (x− x) +

(
x2

2!
+

x2

2!

)
+

(
x3

3!
− x3

3!

)
+

(
x4

4!
+

x4

4!

)
+ . . .

= 2 + 2
x2

2!
+ 2

x4

4!
+ . . .
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Finally, we multiply the entire series by the scalar
1

2
:

cosh(x) =
ex + e−x

2
=

1

2

(
2 + 2

x2

2!
+ 2

x4

4!
+ . . .

)
= 1 +

x2

2!
+

x4

4!
+ . . .

So, up to the term in x4,

cosh(x) ≈ 1 +
x2

2
+

x4

24
.
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