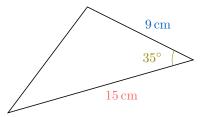

NON-RIGHT-ANGLED TRIANGLE TRIGONOMETRY

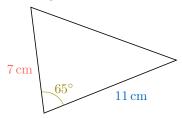
A AREA OF A TRIANGLE USING TWO SIDES AND THE INCLUDED ANGLE

A.1 FINDING AREA OF TRIANGLES USING TWO SIDES AND THE INCLUDED ANGLE

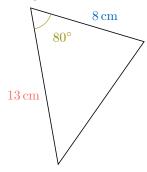

Ex 1: For the triangle below:

calculate the area (round your answer to the nearest integer).

 cm^2


Ex 2: For the triangle below :

calculate the area (round your answer to the nearest integer).


 cm^2

Ex 3: For the triangle below :

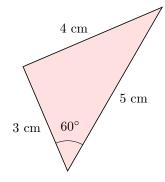
calculate the area (round your answer to the nearest integer).

 $\lfloor \rfloor$ cm²

calculate the area (round your answer to the nearest integer).

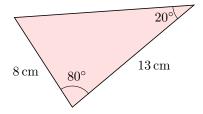
| cm²

A.2 FINDING AREA OF TRIANGLES USING TWO SIDES AND THE INCLUDED ANGLE


Ex 5: For the triangle below :

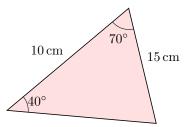
calculate the area (round your answer to 1 decimal place).

cm²


Ex 6: For the triangle below:

calculate the area (round your answer to 1 decimal place).

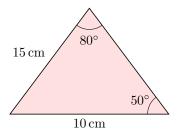
cm²


Ex 7: \Box For the triangle below:

calculate the area (round your answer to the nearest integer).

 cm^2

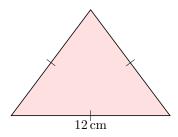
 \mathbf{Ex} 8: For the triangle below:



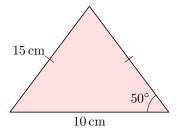
calculate the area (round your answer to the nearest integer).

 cm^2

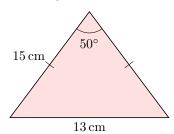
A.3 FINDING AREA OF TRIANGLES


Ex 9: \bigcirc For the triangle below:

calculate the area (round your answer to the nearest integer).

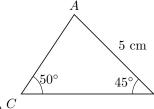

Ex 10: For the triangle below:

calculate the area (round your answer to the nearest integer).


Ex 11: For the triangle below:

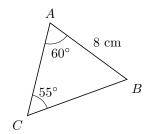
calculate the area (round your answer to the nearest integer).

Ex 12: For the triangle below :



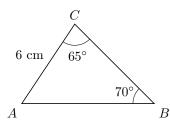
calculate the area (round your answer to the nearest integer). $\,$

B LAW OF SINES


B.1 FINDING SIDE LENGTHS: LEVEL 1

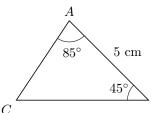
Ex 13: For the triangle C the length of segment \overline{AC} .

AC = cm (rounded to 1 decimal place)

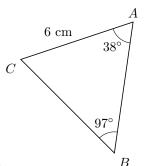

Ex 14: For the triangle below:

find the length of segment \overline{BC} .

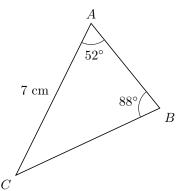
 $BC = \boxed{}$ cm (rounded to 1 decimal plBCe)


Ex 15: For the triangle below:

find the length of segment \overline{AB} .

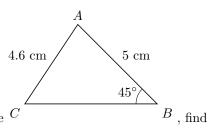

 $AB = \boxed{}$ cm (rounded to 1 decimal place)

B.2 FINDING SIDE LENGTHS: LEVEL 2

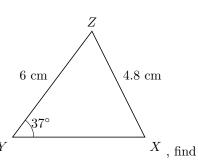

Ex 16: For the triangle the length of segment \overline{AC} .

AC = cm (rounded to 1 decimal place)

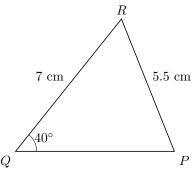
Ex 17: For the triangle length of segment \overline{AB} .



Ex 18: For the triangle find the length of segment \overline{AB} .


 $AB = \boxed{}$ cm (rounded to 1 decimal place)

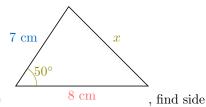
B.3 FINDING ANGLES


Ex 19: For the triangle the angle $\angle ACB$.

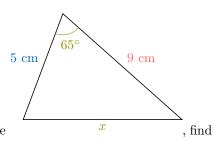
 $\angle ACB = \boxed{}^{\circ}$ (rounded to nearest integer)

Ex 20: For the triangle Y the angle $\angle YXZ$.

 $\angle YXZ = \boxed{}^{\circ}$ (rounded to nearest integer)

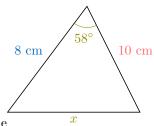


, find the Ex 21: For the triangle Q find the angle $\angle QPR$.


 $\angle QPR = \boxed{}^{\circ}$ (rounded to nearest integer)

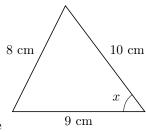
C LAW OF COSINES

C.1 FINDING SIDE LENGTHS



Ex 22: For the triangle x

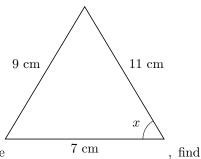
Ex 23: For the triangle side x.


x = cm (rounded to 1 decimal place)

Ex 24: For the triangle $\frac{x}{x}$

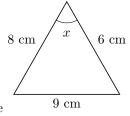
x = cm (rounded to 1 decimal place)

C.2 FINDING ANGLES



Ex 25: For the triangle measure of angle x.

, find the


, find side

o (rounded to the nearest integer)

the measure of angle x.

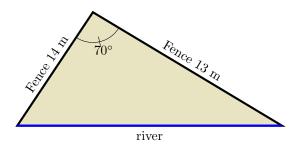
° (rounded to the nearest integer)

o (rounded to the nearest integer)

REAL-WORLD SOLVING PROBLEMS USING SINE AND COSINE LAWS

D.1 SOLVING CONTEXTUAL TRIANGLE PROBLEMS

A triangular field is bordered by two fences and a straight river.

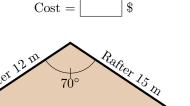

Find:

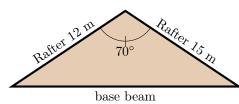
1. the area of the field

Area = m^2 (rounded to the nearest integer)

2. the length of the riverbank

m (rounded to the nearest integer) Length =



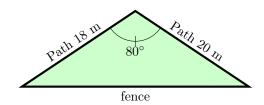

A triangular roof is to be painted. It is bounded by two rafters and a base beam.

1. the area of the roof

 m^2 (rounded to the nearest integer)

2. the cost to paint the roof at \$10 per m²

 $\stackrel{\square}{\overset{\square}{\square}}$ A triangular garden is bounded by two paths and a straight fence.


, find the

1. the area of the garden

Area = m^2 (rounded to the nearest integer)

2. the cost to seed the garden at \$2.5 per m²

\$ (rounded to the nearest integer) Cost =

