QUADRATIC FUNCTIONS

A DEFINITION

Definition Quadratic Function -

A quadratic function is $x \mapsto ax^2 + bx + c$ where $a \neq 0$.

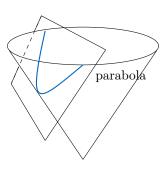
Ex: For $f(x) = x^2 - 3x + 1$, evaluate f(2).

Answer:
$$f(2) = (2)^2 - 3(2) + 1$$

= $4 - 6 + 1$
= -1

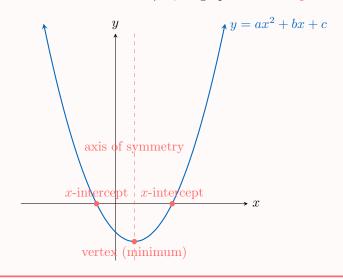
B GRAPH

The parabola is one of the conic sections, which are the group of curves obtained by intersecting a cone with a plane. A parabola is produced by intersecting the cone with a plane parallel to its generating line. By intersecting the cone at other angles, we can produce circles, hyperbolas, and ellipses.



Definition Parabola

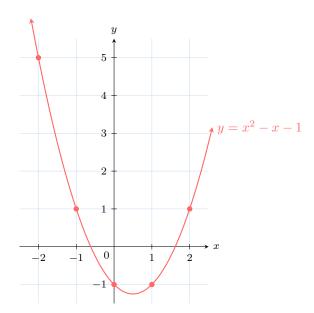
Given a quadratic function $x \mapsto ax^2 + bx + c$ where $a \neq 0$, its graph is called a parabola.



Ex: Sketch the graph of $x \mapsto x^2 - x - 1$.

Answer: A table of values is

\boldsymbol{x}	-2	-1	0	1	2
y	5	1	-1	-1	1



To understand the concavity based on the sign of a, use the GeoGebra animation at https://www.geogebra.org/m/gn3c2sqe.

Proposition Concavity -

For any quadratic function $x \mapsto ax^2 + bx + c$, $a \neq 0$:

- If a > 0, the graph is concave up:
- If a < 0, the graph is concave down:

C SOLVING f(x) = y

Method **Solving** f(x) = y

When solving for a value of f(x) = y, we obtain a quadratic equation in x. Since it is quadratic, there may be 0, 1, or 2 real solutions for x.

Ex: For $f(x) = 2x^2 - 5x + 2$, find the x-intercepts of the function.

Answer: Set f(x) = 0: $2x^2 - 5x + 2 = 0$, with a = 2, b = -5, c = 2.

•
$$\Delta = b^2 - 4ac$$

= $(-5)^2 - 4(2)(2)$
= $25 - 16$
= 9

• As $\Delta > 0$, there are 2 distinct roots.

$$\bullet \ x = \frac{-b - \sqrt{\Delta}}{2a} \qquad \text{or } x = \frac{-b + \sqrt{\Delta}}{2a}$$

$$x = \frac{-(-5) - \sqrt{9}}{2 \cdot 2} \qquad \text{or } x = \frac{-(-5) + \sqrt{9}}{2 \cdot 2}$$

$$x = \frac{5 - 3}{4} \qquad \text{or } x = \frac{5 + 3}{4}$$

$$x = \frac{2}{4} \qquad \text{or } x = \frac{8}{4}$$

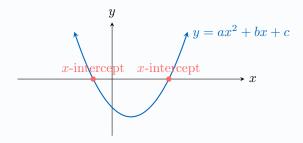
$$x = \frac{1}{2} \qquad \text{or } x = 2$$

The x-intercepts are at $x = \frac{1}{2}$ and x = 2.

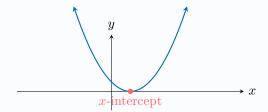
Proposition Relative position between the graph and the x-axis

For any quadratic function $x\mapsto ax^2+bx+c$ and the discriminant $\Delta=b^2-4ac$:

• If $\Delta > 0$, then the graph intersects the x-axis twice.



• If $\Delta = 0$, then the graph touches the x-axis at one point.



• If $\Delta < 0$, then the graph does not intersect the x-axis.

