RELATIONSHIPS BETWEEN ANGLES

In this chapter, we will explore relationships between angles that are key to solving geometry problems. You will learn about complementary angles (summing to 90° , forming a right angle), supplementary angles (summing to 180° , forming a straight angle), opposite angles at a vertex (formed by intersecting lines), and angles created by parallel lines and a transversal, including corresponding, alternate, and co-interior angles. These concepts build on your understanding of right angles (90°), straight angles (180°), and full angles (360°).

A COMPLEMENTARY AND SUPPLEMENTARY ANGLES

Definition **Complementary**

Two angles are **complementary** if their sum is 90° . Complementary angles together form a right angle, like the corner of a square.

Ex: Calculate the measure of the unknown angle x° if it is complementary to a 35° angle.

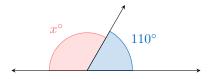
Answer:

The sum of complementary angles is 90° .

$$x^{\circ} + 35^{\circ} = 90^{\circ}$$
$$x^{\circ} = 90^{\circ} - 35^{\circ} \quad \text{(subtract 35^{\circ})}$$
$$= 55^{\circ}$$

Ex: Calculate the measure of the unknown angle x° if it is supplementary to a 110° angle.

Answer:



The sum of supplementary angles is 180°.

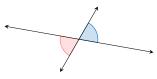
$$x^{\circ} + 110^{\circ} = 180^{\circ}$$

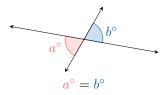
 $x^{\circ} = 180^{\circ} - 110^{\circ}$ (subtract 110°)
 $= 70^{\circ}$

B OPPOSITE ANGLES AT A VERTEX

- Definition **Opposite Angles at a Vertex**

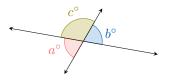
Opposite angles at a vertex are angles that are opposite each other at the point where two lines intersect, sharing a common vertex.





\mathbf{Proof}

Consider two lines intersecting at a point, forming opposite angles a° and b° , and an adjacent angle c° .



Since a° and c° form a straight angle:

 $a^{\circ} + c^{\circ} = 180^{\circ}$ (straight angle)

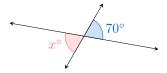
Similarly, b° and c° form a straight angle:

 $b^{\circ} + c^{\circ} = 180^{\circ}$ (straight angle)

Thus, $a^{\circ} + c^{\circ} = b^{\circ} + c^{\circ}$. Subtracting c° from both sides gives:

 $a^{\circ} = b^{\circ}$

Ex: Calculate the measure of the unknown angle x° .



Answer: Opposite angles at a vertex are equal.

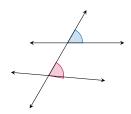
 $x^{\circ} = 70^{\circ}$ (opposite angles are equal)

 $\binom{\bullet}{\pm}$

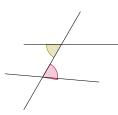
C CORRESPONDING, ALTERNATE, AND CO-INTERIOR ANGLES

Definition Corresponding, Alternate, and Co-interior Angles _

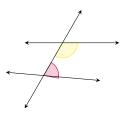
• Corresponding angles are on the same side of a transversal that intersects two lines and are in matching corners relative to the intersected lines, like the top-right corners of each intersection.



• Alternate angles are on opposite sides of a transversal and lie between the two intersected lines, forming a "Z" shape.

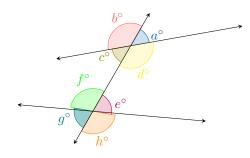


• Co-interior angles are on the same side of a transversal and between the two intersected lines, forming a "C" shape.



Ex: Identify the following for the given diagram:

- 1. The corresponding angles.
- 2. The alternate angles.
- 3. The co-interior angles.



Answer:

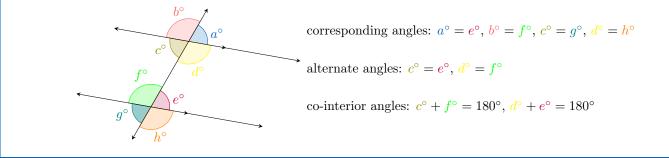
- 1. Corresponding angles: a° and e° , b° and f° , c° and g° , d° and h° .
- 2. Alternate angles: c° and e° , d° and f° .
- 3. Co-interior angles: c° and f° , d° and e° .

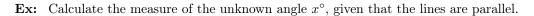
D PROPERTIES OF PARALLEL LINES

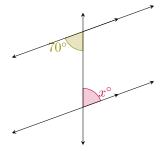
Proposition Properties of Parallel Lines

If two lines are parallel and intersected by a transversal, then:

- Corresponding angles are equal.
- Alternate angles are equal.
- Co-interior angles are supplementary (sum to 180°).

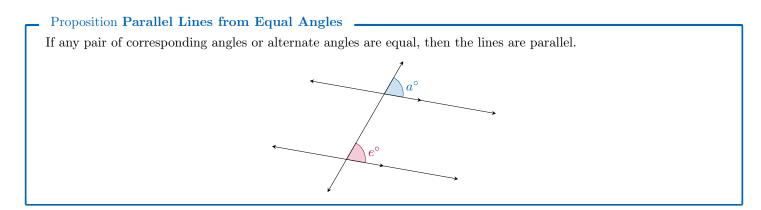




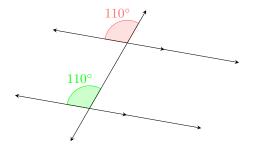


Answer: Since the angles are alternate and the lines are parallel, they are equal.

 $x^{\circ} = 70^{\circ}$ (alternate angles are equal)



Ex: Show that the lines are parallel, given the angle measures.



Answer: Since the corresponding angles are equal $(110^{\circ} = 110^{\circ})$, the lines are parallel.

(te)