A SQUARE ROOTS

A.1 CALCULATING SQUARE ROOTS OF PERFECT SQUARES

Ex 1: Calculate:

$$\sqrt{4} =$$

Ex 2: Without using a calculator, calculate:

$$\sqrt{36} =$$

Ex 3: Calculate:

$$\sqrt{64} =$$

Ex 4: Calculate:

$$\sqrt{49} =$$

Ex 5: Calculate:

$$\sqrt{100} =$$

Ex 6: Calculate:

$$\sqrt{81} =$$

Ex 7: Calculate:

$$\sqrt{0} = \boxed{}$$

A.2 CALCULATING SQUARE ROOTS OF FRACTIONS

Ex 8: Write in fraction form:

$$\sqrt{\frac{1}{4}} =$$

Ex 9: Write in fraction form:

$$\sqrt{\frac{1}{25}} = \boxed{}$$

Ex 10: Write in fraction form:

$$\sqrt{\frac{1}{9}} =$$

Ex 11: Write in fraction form:

$$\sqrt{\frac{1}{16}} =$$

Ex 12: Write in fraction form:

$$\sqrt{\frac{9}{16}} = \boxed{}$$

Ex 13: Write in fraction form:

$$\sqrt{\frac{4}{9}} =$$

B CALCULATING SQUARE ROOTS

B.1 USING A CALCULATOR

Ex 14: Using a calculator, evaluate $\sqrt{2}$ (round to 2 decimal places).

$$\sqrt{2} \approx$$

Ex 15: Using a calculator, evaluate $\sqrt{10}$ (round to 2 decimal places).

$$\sqrt{10} \approx$$

Ex 16: Using a calculator, evaluate $\sqrt{50}$ (round to 2 decimal places).

$$\sqrt{50} \approx$$

Ex 17: Using a calculator, evaluate $\sqrt{0.5}$ (round to 2 decimal places).

$$\sqrt{0.5} \approx$$

B.2 FINDING THE SIDE LENGTH OF A SQUARE

Ex 18: The area of a square is 2 m^2 . What is the length of the side of the square, s?

 $s \approx$ _____ m (round your answer to 2 decimal places)

Ex 19: The area of a square is 10 m^2 . What is the length of the side of the square, s?

 $s \approx$ m (round your answer to 2 decimal places)

C CUBE ROOT

C.1 CALCULATING CUBE ROOTS OF PERFECT CUBES

$$\sqrt[3]{8} =$$

$$\sqrt[3]{27} =$$

$$\sqrt[3]{64} =$$

$$\sqrt[3]{125} =$$

$$\sqrt[3]{1000} =$$

Ex 25: Calculate:

$$\sqrt[3]{0} =$$

D LAWS OF SQUARE ROOTS

D.1 WRITING AS A SINGLE ROOT: LEVEL 1

Ex 26: Write as a single square root:

$$\sqrt{3}\sqrt{4} =$$

Ex 27: Write as a single square root:

$$\sqrt{5}\sqrt{20} =$$

Ex 28: Write as a single square root:

$$\sqrt{6}\sqrt{6} =$$

Ex 29: Write as a single square root:

$$\sqrt{9}\sqrt{4} =$$

Ex 30: Write as a single square root:

$$\sqrt{2}\sqrt{8} =$$

D.2 WRITING AS A SINGLE ROOT: LEVEL 2

Ex 31: Write as a single square root:

$$\sqrt{2}\sqrt{3}\sqrt{5} =$$

Ex 32: Write as a single square root:

$$\sqrt{5}\sqrt{2}\sqrt{10} = \boxed{}$$

Ex 33: Write as a single square root:

$$\left(\sqrt{3}\right)^3 =$$

Ex 34: Write as a single square root:

$$\left(\sqrt{2}\right)^3\sqrt{3} = \boxed{}$$

D.3 UNDERSTANDING SQUARE ROOT OPERATIONS

MCQ 35: Is
$$\sqrt{2} + \sqrt{3} = \sqrt{2+3}$$
?

- \square True
- ☐ False

MCQ 36: Is
$$\sqrt{2}\sqrt{3} = \sqrt{6}$$
?

- □ True
- \square False

MCQ 37: Is
$$\sqrt{3} + \sqrt{3} = \sqrt{3+3}$$
?

- ☐ True
- ☐ False

MCQ 38: Is
$$\sqrt{3} + \sqrt{3} = 3$$
?

- □ True
- \square False

D.4 SIMPLIFYING THE SQUARE ROOT OF A PERFECT SQUARE: LEVEL 1

 \mathbf{Ex} **39:** Simplify:

$$\sqrt{4} =$$

Ex 40: Simplify:

$$\sqrt{36} =$$

Ex 41: Simplify:

$$\sqrt{10^2} =$$

Ex 42: Simplify:

$$\sqrt{x^2} =$$

Ex 43: Simplify:

$$\sqrt{(2x)^2} =$$

D.5 SIMPLIFYING THE SQUARE ROOT OF A PERFECT SQUARE: LEVEL 2

Ex 44: Simplify:

$$\sqrt{9x^2} =$$

Ex 45: Simplify:

Ex 46: Simplify:

$$\sqrt{4x^2} + x =$$

Ex 47: Simplify:

$$\sqrt{12}\sqrt{3} =$$

D.6 SIMPLIFYING SQUARE ROOTS

Ex 48: Simplify:

$$\sqrt{18} =$$

Ex 49: Simplify:

$$\sqrt{50} =$$

Ex 50: Simplify:

$$\sqrt{32} =$$

Ex 51: Simplify:

$$\sqrt{20} =$$

D.7 SIMPLIFYING QUOTIENTS OF SQUARE ROOTS

Ex 52: Simplify:

$$\frac{\sqrt{10}}{\sqrt{5}} = \boxed{}$$

Ex 53: Simplify:

$$\frac{\sqrt{75}}{\sqrt{25}} = \boxed{}$$

Ex 54: Simplify:

$$\frac{\sqrt{18}}{\sqrt{3}} = \boxed{}$$

Ex 55: Simplify:

$$\frac{\sqrt{20}}{\sqrt{2}} = \boxed{}$$

E ALGEBRAIC OPERATIONS

E.1 ADDING AND SUBTRACTING LIKE RADICALS: LEVEL $\mathbf{1}$

Ex 56: Simplify:

$$2\sqrt{3} + 5\sqrt{3} =$$

Ex 57: Simplify:

$$4\sqrt{5} + 7\sqrt{5} = \boxed{$$

Ex 58: Simplify:

$$3\sqrt{6}-\sqrt{6}=\boxed{}$$

Ex 59: Simplify:

$$3\sqrt[3]{7} + 5\sqrt[3]{7} =$$

Ex 60: Simplify:

$$2\sqrt{2} - 4\sqrt{2} =$$

Ex 61: Simplify:

$$2\sqrt{7} - 5\sqrt{7} = \boxed{}$$

E.2 ADDING AND SUBTRACTING LIKE RADICALS: LEVEL 2

Ex 62: Simplify:

$$\sqrt{8} - \sqrt{2} =$$

Ex 63: Simplify:

$$\sqrt{12} + 3\sqrt{3} =$$

Ex 64: Simplify:

$$5\sqrt{3} - \sqrt{12} = \boxed{}$$

Ex 65: Simplify:

$$2\sqrt{7} + 3\sqrt{28} = \boxed{}$$