ROOTS

A SQUARE ROOTS

Definition Square root

The square root of a, written \sqrt{a} , is the positive number which, when squared, gives a:

$$\left(\sqrt{a}\right)^2 = \sqrt{a} \times \sqrt{a} = a$$

Ex: Find $\sqrt{25}$.

Answer: Since $5 \times 5 = 25$, $\sqrt{25} = 5$.

Definition Perfect Squares

A perfect square is a number that is the result of squaring an integer.

Ex: The perfect squares of the first few integers are:

1, 4, 9, 16, 25, 36, 49, 64, and so on.

Definition Simplest square root Form -

A square root is written in simplest form if the number under the square root sign is as small as possible.

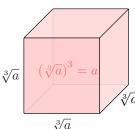
B CALCULATING SQUARE ROOTS

It is easy to calculate the square root of a perfect square, but determining the square root of other numbers can be quite challenging.

Method Use a calculator

- Press the square root button $\sqrt{}$
- Enter the number
- Press the equals button =

Ex: Use a calculator to find $\sqrt{10}$ (round to 1 decimal place).


Answer: By entering $\sqrt{10}$ and pressing the equals button, the calculator displays: 3.16227766017. So $\sqrt{10} \approx 3.2$.

C CUBE ROOT

Definition Cube Root

The cube root of a, written $\sqrt[3]{a}$, is the **number** which, when cubed, gives a:

$$\left(\sqrt[3]{a}\right)^3 = a$$

Ex: Find $\sqrt[3]{125}$.

Answer: As $5 \times 5 \times 5 = 125$, $\sqrt[3]{125} = 5$.

D LAWS OF SQUARE ROOTS

Proposition Law 1 _

For two positive numbers a and b:

$$\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$$

Ex: Show that $\sqrt{6} = \sqrt{2} \cdot \sqrt{3}$.

Answer:

$$\sqrt{6} = \sqrt{2 \times 3}$$
$$= \sqrt{2} \cdot \sqrt{3}$$

Proposition Law 2 (Perfect Square)

For a positive number a:

$$\sqrt{a^2} = a$$

$$\sqrt{a \cdot a} = a$$

Ex: Find $\sqrt{25}$.

Answer:

$$\sqrt{25} = \sqrt{5 \times 5}$$
= 5 (extract one number of the pair from the square root)

Proposition Law 3

For two positive numbers a and b:

$$\sqrt{a^2b} = a\sqrt{b}$$
$$\sqrt{a \cdot a \cdot b} = a\sqrt{b}$$

Ex: Simplify $\sqrt{12} = 2\sqrt{3}$.

Answer:

$$\sqrt{12} = \sqrt{2 \times 2 \times 3}$$
 = $2\sqrt{3}$ (extract one number of the pair from the square root)

Proposition Law 4

For two positive numbers a and b:

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

Ex: Simplify $\frac{\sqrt{6}}{\sqrt{3}}$.

Answer:

$$\frac{\sqrt{6}}{\sqrt{3}} = \sqrt{\frac{6}{3}}$$
$$= \sqrt{2}$$

E ALGEBRAIC OPERATIONS

Proposition Algebraic Operations

We can perform operations with square roots just as we do with ordinary numbers. In particular:

- We can add and subtract like square roots (i.e., same number under the root) in the same way that we add and subtract like algebraic terms.
- We can use the usual rules for expanding brackets.

Answer:

$$2\sqrt{3} + 4\sqrt{3} = (2+4)\sqrt{3}$$
 (factorisation)
= $6\sqrt{3}$

