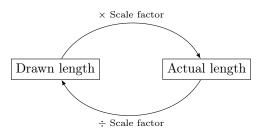
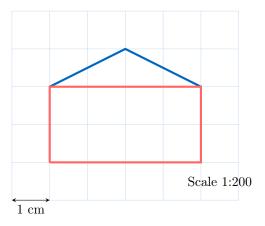
SCALE DIAGRAMS

A DEFINITIONS

Definition Scale Diagram -


A scale diagram is a way of representing an object at a different proportion to its real-world size using a scale, which is a ratio expressed as 1:scale factor or 1/scale factor.

$$\frac{1}{\text{Scale factor}} = \frac{\text{Drawn length}}{\text{Actual length}}$$


B FORMULAE

Proposition Formulae

 $\begin{aligned} & \text{Actual length} = \text{Drawn length} \times \text{Scale factor} \\ & \text{Drawn length} = \text{Actual length} \div \text{Scale factor} \\ & \text{Scale factor} = \frac{\text{Actual length}}{\text{Drawn length}} \end{aligned}$

Ex: Find the width of this house:

Answer: The drawn width of the house is 4 cm.

Actual width = Drawn width
$$\times$$
 Scale factor
= $4 \text{ cm} \times 200$
= 800 cm
= 8 m

The actual width of the house is 8 meters.

Ex: For the scale 1:200, find the drawn length corresponding to an actual length of 6 m.

Answer:

$$\begin{aligned} \text{Drawn length} &= \frac{\text{Actual length}}{\text{Scale factor}} \\ &= \frac{6 \, \text{m}}{200} \\ &= \frac{600 \, \text{cm}}{200} \qquad \text{(unit conversion)} \\ &= 3 \, \text{cm} \end{aligned}$$

So, $6\,\mathrm{m}$ of actual length represents $3\,\mathrm{cm}$ of drawn length.

 $\mathbf{Ex:} \ 2\,\mathrm{cm}$ of drawn length represents $5\,\mathrm{m}$ of actual length. Find the scale factor.

Answer:

Scale factor =
$$\frac{\text{Actual length}}{\text{Drawn length}}$$

= $\frac{5 \text{ m}}{2 \text{ cm}}$
= $\frac{500 \text{ cm}}{2 \text{ cm}}$ (converting to the same units)
= 250

So, the scale factor is 250.

