A NUMERICAL SEQUENCE

A.1 FINDING u_n

Ex 1:

n	1	2	3	4	5	6
u_n	3	5	7	9	11	13

What is u_4 ?

Ex 2:

n	1	2	3	4	5	6
u_n	2	6	12	20	30	42

What is u_5 ?

Ex 3:

n	1	2	3	4	5	6	7	8
u_n	4	9	16	25	36	49	64	81

What is u_7 ?

Ex 4:

n	1	2	3	4	5	6	7	8
u_n	1	3	7	15	31	63	127	255

What is u_8 ?

A.2 FINDING u_n IN AN ARITHMETIC SEQUENCE

Ex 5: What is u_6 for this sequence?

\overline{n}	1	2	3	4	5	6
u_n	3	5	7	9	11	

Ex 6: What is u_6 for this sequence?

\overline{n}	1	2	3	4	5	6
u_n	3	8	13	18	23	

Ex 7: What is u_5 for this sequence?

n	1	2 3		4	5				
u_n	20	18	16	14					

Ex 8: What is u_6 for this sequence?

n	1	2	3	4	5	6
u_n	80	70	60	50	40	

B DEFINITION USING A RECURSIVE RULE

B.1 CALCULATING THE FIRST TERMS

Ex 9: Write the sequence defined by: the first term is 7, and each term is obtained by adding 4 to the previous term.

Ex 10: Write the sequence defined by: the first term is 1, and each term is obtained by multiplying the previous term by 2.

Ex 11: Write the sequence defined by: the first term is 10, and each term is obtained by subtracting 5 from the previous term.

Ex 12: Write the sequence defined by: the first term is 2.5, and each term is obtained by adding 0.5 to the previous term.

1							
(,	,	,	,	,	٠	

B.2 CALCULATING THE FIRST TERMS

Ex 13: Calculate the first terms of the sequence defined by:

$$u_0 = 3$$
 and $u_{n+1} = u_n + 4$.

- \bullet $u_1 =$
- \bullet $u_2 =$
- $u_3 = |$
- $u_4 = |$
- $u_5 = |$

Ex 14: Calculate the first terms of the sequence defined by:

$$u_0 = 3$$
 and $u_{n+1} = 2u_n$.

- $u_1 = |$
- $u_2 =$
- $u_3 =$
- $u_4 = |$
- $u_5 =$

Ex 15: Calculate the first terms of the sequence defined by:

$$u_0 = 12$$
 and $u_{n+1} = u_n - 10$.

- $u_1 = |$
- $u_2 = |$
- $u_3 = |$
- $u_4 = |$

\bullet $u_5 = $
Ex 16: Calculate the first terms of the sequence defined by:
$u_0 = 64$ and $u_{n+1} = \frac{u_n}{2}$.
\bullet $u_1 = $
\bullet $u_2 = $
• $u_3 = $
• $u_4 = \boxed{}$
\bullet $u_5 =$
B.3 IDENTIFYING THE RECURSIVE RULE
Ex 17: Given the sequence: $(3, 5, 7, 9, 11, 13,)$
• The first term is
Ex 18: Given the sequence: $(60, 55, 50, 45, 40, 35,)$
• The first term is
Ex 19: Given the sequence: $(64, 32, 16, 8, 4, 2,)$
• The first term is
Ex 20: Given the sequence: $(1, 10, 100, 1000, 10000,)$
• The first term is
\Box Δdd

B.4 IDENTIFYING THE RECURSIVE RULE

Ex 21: Given the sequence: (3, 5, 7, 9, 11, 13, ...), what is its recursive rule?

- $u_0 = \boxed{}$.
- $u_{n+1} =$

Ex 22: Given the sequence: (100, 90, 80, 70, 60, ...), what is its recursive rule?

- $u_0 =$.
- $u_{n+1} =$

Ex 23: Given the sequence: $(2, 6, 18, 54, 162, \dots)$, what is its recursive rule?

- \bullet $u_0 =$
- $\bullet \ u_{n+1} = \boxed{}$

Ex 24: Given the sequence: (8, 4, 2, 1, 0.5, 0.25, ...), what is its recursive rule?

- $u_0 = \boxed{}$.
- $\bullet \ u_{n+1} =$

B.5 MODELING REAL SITUATIONS WITH SEQUENCES

Ex 25: A scientist observes a culture of bacteria. At the start, there are $u_0 = 5$ bacteria in a petri dish. Each day, the number of bacteria doubles.

Let u_n be the number of bacteria at the day n. What are the first three terms of the sequence (u_n) ?

- $u_1 =$ bacteria
- $u_2 =$ bacteria
- $u_3 =$ bacteria

What is its recursive rule?

$$u_{n+1} =$$

Ex 26: Each day, I walk more and more steps. On day 0, I walk $u_0 = 1000$ steps. Each day, I walk 500 steps more than the day before.

Let u_n be the number of steps I have walked at the end of day n. What are the first three terms of the sequence (u_n) ?

- $u_1 =$ steps
- $u_3 =$ steps

What is its recursive rule?

• The rule is

□ Subtract

 \square Multiply

 \square Divide

$u_{n+1} = \boxed{}$	1. How many members will there be in 2026?
Ex 27: Suppose I deposit \$100 in a savings account. Each year, my amount is multiplied by 1.1 (that is, it increases by 10% each year). Let u_n be the amount of money in the account after n years. What are the first three terms of the sequence (u_n) ? • $u_0 = $ dollars • $u_1 = $ dollars • $u_2 = $ dollars What is its recursive rule? $u_{n+1} = $	2. How many members will there be in 2027? 3. For all $n \in \mathbb{N}$, express u_{n+1} in terms of u_n . $u_{n+1} = $ Ex 31: A school has 150 students in 2025. Each year, 20% of the students leave the school, and the school admits 50 new students. Let (u_n) be the sequence corresponding to the number of students
Ex 28: At the start, I have $u_0 = 20$ dollars. Each week, my parents give me \$10 more. Let u_n be the amount of money I have at the beginning of week n . What are the first three terms of the sequence (u_n) ? • $u_1 = $ dollars • $u_2 = $ dollars • $u_3 = $ dollars What is its recursive rule?	in the school in $2025 + n$. 1. How many students will there be in 2026 ? 2. How many students will there be in 2027 ? 3. For all $n \in \mathbb{N}$, express u_{n+1} in terms of u_n . $u_{n+1} = $
$u_{n+1} = $	Ex 32: A YouTube channel has 500 subscribers in 2025. Each year, the number of subscribers increases by 10% due to organic growth, and it gains 100 new subscribers from
Ex 29: A company has 200 employees in 2025. Each year, 10% of the employees leave the company, and the company hires 30 new employees. Let (u_n) be the sequence corresponding to the number of employees in the company in $2025 + n$.	promotions. Let (u_n) be the sequence corresponding to the number of subscribers to the channel in $2025 + n$. 1. How many subscribers will there be in 2026?

2. How many subscribers will there be in 2027?

3. For all $n \in \mathbb{N}$, express u_{n+1} in terms of u_n .

 $u_{n+1} = \boxed{}$

C DEFINITION USING AN EXPLICIT RULE

C.1 CALCULATING TERMS FROM AN EXPLICIT **FORMULA**

Ex 33: Consider the sequence defined by the explicit formula: $u_n = 3n + 2.$

Write the first four terms of this sequence.

1. How many employees will there be in 2026?

2. How many employees will there be in 2027?

3. For all $n \in \mathbb{N}$, express u_{n+1} in terms of u_n .

gym adds 20 new members from advertising.

members in the gym in 2025 + n.

Ex 30: A gym has 200 members in 2025. Each year, the

number of members increases by 10% through referrals, and the

Let (u_n) be the sequence corresponding to the number of

• $u_1 = \boxed{}$	stamps
• $u_2 = \boxed{}$ • $u_3 = \boxed{}$	Ex 39: A school plants 5 trees in its garden to start. Every year, they plant 3 new trees. The total number of trees after n years is given by the formula:
Ex 34: Consider the sequence defined by the explicit formula: $u_n = -10n + 100$. Write the first four terms of this sequence. • $u_0 = \boxed{}$	$u_n =$ Initial number of trees + Nbr years × Trees planted per year = $5 + n \times 3$ = $5 + 3n$
$\bullet \ u_1 = $ $\bullet \ u_2 = $	where u_n is the number of trees after n years. How many trees will there be after 12 years?
• $u_3 = $	D ARITHMETIC SEQUENCES
Ex 35: Consider the sequence defined by the explicit formula: $u_n = n^2 + 2$. Write the first four terms of this sequence.	D'ANTIMETIC SEQUENCES
write the first four terms of this sequence. • $u_0 = $	D.1 STUDYING AN ARITHMETIC SEQUENCE
• $u_1 = \boxed{}$ • $u_2 = \boxed{}$ • $u_3 = \boxed{}$	Ex 40: Consider the sequence (5, 8, 11, 14, 17,) 1. • $u_1 - u_0 =$
C.2 MODELING REAL SITUATIONS WITH	
SEQUENCES	2. Show that the sequence is arithmetic.
Ex 36: You start with \$30 and each week your parent gives you \$10. The amount of money you have after n weeks is given by the formula: $u_n = \text{Initial Amount} + \text{Nbr weeks} \times \text{Amount received each week}$ $= 30 + n \times 10$	\Box The ratio of consecutive terms is constant. \Box The difference between consecutive terms is constant. 3. What is its recursive rule? $u_{n+1} = \boxed{\hspace{2cm}}$
$=30+10n$ where u_n is the amount after n weeks. How much money will you have after 20 weeks?	4. What is its explicit rule? $u_n = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
dollars	5. Find the 50th term of the sequence.
Ex 37: You deposit \$1 500 in a savings account that pays simple interest at a rate of 4% per year. The amount of money in your account after n years is given by the formula:	$u_{50} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
$u_n = \text{Initial Amount} + \text{Nbr years} \times \text{Percentage of the initial amount}$	Ex 41: Consider the sequence $(4, 9, 14, 19, \ldots)$
$= 1500 + n \times 0.04 \times 1500$ = 1500 + 60n	1. • $u_1 - u_0 = $
where u_n is the amount after n years. What is your amount at year 20?	$\bullet \ u_2 - u_1 = $ $\bullet \ u_3 - u_2 = $
Lex 38: You start a stamp collection with 12 stamps. Each month, you add 4 new stamps to your collection. The number of stamps you have after n months is given by the formula:	 2. Show that the sequence is arithmetic. ☐ The ratio of consecutive terms is constant. ☐ The difference between consecutive terms is constant. 3. What is its recursive rule?
$u_n = \text{Initial number of stamps} + \text{Nbr months} \times \text{Stamps added per}$ = $12 + n \times 4$	$u_{n+1} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
=12+4n	4. What is its explicit rule?
where u_n is the number of stamps after n months. How many stamps will you have after 15 months?	$u_n = \boxed{}$
www.commeunjeu.com 4	(a)

5. Find the 50th term of the sequence.	Ex 48: For an arithmetic sequence (u_n) with common difference $d = -3$ and $u_0 = 20$, find n for $u_n = 2$.
$u_{50} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	$u = -3$ and $u_0 = 20$, find n for $u_n = 2$. $n = $
Ex 42: Consider the sequence (125, 115, 105, 95,)	Ex 49: For an arithmetic sequence (u_n) with common difference $d = \frac{1}{2}$ and $u_0 = 2$, find n for $u_n = 6$.
$1. \qquad \bullet u_1 - u_0 = \boxed{}$	n =
$\bullet \ u_2 - u_1 = $	
• $u_3 - u_2 = $	D.4 MODELING REAL SITUATIONS

2. Show that the sequence is arithmetic. ☐ The ratio of consecutive terms is constant. \square The difference between consecutive terms is constant.

3. What is its recursive rule?

$$u_{n+1} =$$

4. What is its explicit rule?

$$u_n = \boxed{}$$

5. Find the 1000th term of the sequence.

$$u_{1000} = \boxed{}$$

D.2 DETERMINING THE EXPLICIT RULE OF AN ARITHMETIC SEQUENCE GIVEN TWO TERMS

For the arithmetic sequence given that $u_2 = 11$ and $u_6 = 31$, what is its explicit rule?

$$u_n = \boxed{}$$

Ex 44: For the arithmetic sequence given that $u_1 = 7$ and $u_{20} = 45$, what is its explicit rule?

$$u_n =$$

Ex 45: \square For the arithmetic sequence given that $u_3 = 32$ and $u_{20} = 202$, what is its explicit rule?

$$u_n =$$

THE TERM **NUMBER FINDING ARITHMETIC SEQUENCE**

Ex 46: For an arithmetic sequence (u_n) with common difference d=2 and $u_0=1$, find n for $u_n=21$.

$$n =$$

Ex 47: For an arithmetic sequence (u_n) with common difference d=4 and $u_0=-6$, find n for $u_n=38$.

$$n =$$

Ex 50: You start with \$30 and each week your parent gives you \$10.

Let u_n be the amount of money you have after n weeks.

1. Find the explicit formula for u_n .

$$u_n =$$

2. How much money will you have after 20 weeks?

You deposit \$1500 in a savings account that pays simple interest at a rate of 4% per year.

Let u_n be the amount of money in your account after n years.

1. Find the explicit formula for u_n .

$$u_n = \boxed{}$$

2. What is your amount at year 20?

	dollars
--	---------

Ex 52: You start a stamp collection with 12 stamps. Each month, you add 4 new stamps to your collection.

Let u_n be the number of stamps you have after n months.

1. Find the explicit formula for u_n .

$$u_n =$$

2. How many stamps will you have after 15 months?

Ex 53: A school plants 5 trees in its garden to start. Every year, they plant 3 new trees.

Let u_n be the total number of trees after n years.

1. Find the explicit formula for u_n .

$$u_n =$$

2. How many trees will there be after 12 years?

E GEOMETRIC SEQUENCES

E.1 STUDYING A GEOMETRIC SEQUENCE

Ex 54: Consider the sequence (3, 6, 12, 24, 48, ...)

- 1. $u_1 \div u_0 = \boxed{}$

 - $\bullet \ u_3 \div u_2 = \boxed{}$
- 2. Show that the sequence is geometric.
 - \Box The ratio between consecutive terms is constant.
 - \square The difference between consecutive terms is constant.
- 3. What is its recursive rule?

$$u_{n+1} = \boxed{}$$

4. What is its explicit rule?

$$u_n =$$

5. Find the 10th term of the sequence.

$$u_{10} =$$

Ex 55: Consider the sequence $(1, -1, 1, -1, 1, \ldots)$

- $1. \qquad \bullet \quad u_1 \div u_0 = \boxed{}$

 - $\bullet \ u_3 \div u_2 = \boxed{}$
- 2. Show that the sequence is geometric.
 - \square The ratio between consecutive terms is constant.
 - \Box The difference between consecutive terms is constant.
- 3. What is its recursive rule?

$$u_{n+1} =$$

4. What is its explicit rule?

$$u_n = \boxed{}$$

5. Find the 10th term of the sequence.

$$u_{10} = \boxed{}$$

Ex 56: Consider the sequence (4, 2, 1, 0.5, 0.25, ...)

- $1. \qquad \bullet \quad u_1 \div u_0 = \boxed{}$

 - $\bullet \ u_3 \div u_2 = \boxed{}$

- 2. Show that the sequence is geometric.
 - ☐ The ratio between consecutive terms is constant.
 - \Box The difference between consecutive terms is constant.
- 3. What is its recursive rule?

$$u_{n+1} = \boxed{}$$

4. What is its explicit rule?

$$u_n =$$

5. Find the 10th term of the sequence.

$$u_{10} =$$

E.2 FINDING THE TERM NUMBER IN AN GEOMETRIC SEQUENCE

Ex 57: For a geometric sequence (u_n) with common ratio r=2 and $u_0=1$, find n for $u_n=8$.

$$n = \boxed{}$$

Ex 58: For a geometric sequence (u_n) with common ratio r=3 and $u_0=1$, find n for $u_n=81$.

$$n =$$

Ex 59: For a geometric sequence (u_n) with common ratio r = 10 and $u_0 = 2$, find n for $u_n = 2000$.

$$n = \boxed{}$$

Ex 60: For a geometric sequence (u_n) with common ratio r=2 and $u_0=10$, find n for $u_n=160$.

$$n =$$

E.3 MODELING REAL SITUATIONS

Ex 61: \square A scientist observes a culture of bacteria. At the start, there are $u_0 = 5$ bacteria in a petri dish. Each day, the number of bacteria doubles.

Let u_n be the number of bacteria at the day n.

- 1. What are the first three terms of the sequence (u_n) ?
 - $u_1 =$ bacteria
 - $u_2 =$ bacteria
 - $u_3 =$ bacteria
- 2. What is its recursive rule?

$$u_{n+1} =$$

3. What is its explicit rule?	1. What are the first three terms of the sequence (u_n) ?
$u_n = $	• $u_1 = $ dollars
	• $u_2 =$ dollars
4. How many bacteria will there be after 10 days?	• $u_3 =$ dollars
$u_{10} = $ bacteria	2. What is its recursive rule?
Ex 62: An investor starts with \$100 in a high-risk fund. Each year, the value of the investment triples.	$u_{n+1} = \boxed{}$ 3. What is its explicit rule?
Let u_n be the value of the investment after n years.	$u_n = $
1. What are the first three terms of the sequence (u_n) ?	
• $u_1 = $ dollars	4. How many dollars will be in the account after 10 years? (Round to two decimal places if necessary.)
• $u_2 = $ dollars	dellana
• $u_3 = $ dollars	$u_{10} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
2. What is its recursive rule?	
$u_{n+1} = $ 3. What is its explicit rule? $u_n = $	Ex 65: You buy a car for \$10,000. It depreciates at a rate of 20% per year. Depreciation means that each year, the value decreases by 20% of the current value, so the remaining value is 80% of the previous year's value. Thus, the value multiplies by 0.8 each year.
	Let u_n be the value of the car after n years. What are the first
4. How many dollars will the investment be worth after 10 years?	three terms of the sequence (u_n) ?
	1. • $u_1 = $ dollars
$u_{10} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	• $u_2 = $ dollars
	• $u_3 = $ dollars
Ex 63: A computer virus infects 4 computers initially. Each	2. What is its recursive rule?
day, the number of infected computers quadruples. Let u_n be the number of infected computers at day n .	$u_{n+1} = \boxed{}$
1. What are the first three terms of the sequence (u_n) ?	3. What is its explicit rule?
• $u_1 = $ computers • $u_2 = $ computers	$u_n = $
• $u_3 = \boxed{}$ computers	4. How many dollars will the car be worth after 10 years?
2. What is its recursive rule?	(Round to two decimal places if necessary.)
$u_{n+1} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	$u_{10} = $ dollars
3. What is its explicit rule?	F SERIES
$u_n = $	
4. How many computers will be infected after 10 days?	F.1 COMPUTING TERMS AND SUMS OF SEQUENCES: LEVEL 1
$u_{10} = $ computers	Ex 66: Consider the sequence, (u_n) , defined by $(2, 5, 8, 11,)$. Find
	1. $u_0 = $
Ex 64: You deposit \$1000 in a savings account that earns	$2. \ u_1 = \boxed{}$
5% compound interest per year. Compound interest means that each year, interest is calculated on the current balance (principal	3. $u_2 = \boxed{}$
plus any previously earned interest), and added to the balance.	
Let u_n be the amount in the account after n years.	4. $S_0 = $

- 5. $S_1 =$
- 6. $S_2 =$

Ex 67: Consider the sequence (u_n) defined by (2, 4, 8, 16, 32, ...). Find:

- 1. $u_0 =$
- 2. $u_1 =$
- 3. $u_2 =$
- 4. $S_0 =$
- 5. $S_1 =$
- 6. $S_2 =$

Ex 68: Consider the sequence (u_n) defined by $(5, -5, -15, -25, \ldots)$. Find:

- 1. $u_0 =$
- 2. $u_1 =$
- 3. $u_2 = \boxed{}$
- 4. $S_0 =$
- 5. $S_1 = \boxed{}$
- 6. $S_2 =$

F.2 COMPUTING TERMS AND SUMS OF SEQUENCES: LEVEL 2

Ex 69: For the sequence (u_n) defined by $u_n = n^2$, find:

Ex 70: For the sequence (u_n) defined by $u_0 = 2$ and $u_{n+1} = 2u_n - 1$, find:

Ex 71: For the sequence (u_n) defined by $u_n = n^2 - 5n$, find:

$$S_3 =$$

Ex 72: For the sequence (u_n) defined by $u_{n+1} = u_n + n$ with $u_0 = 2$, find:

$$S_3 =$$

G SUM OF AN ARITHMETIC SEQUENCE

G.1 CALCULATING SUMS OF ARITHMETIC SEQUENCES: LEVEL 1

Ex 73: Calculate the sum

$$1+2+3+4+5+6+7+8+9+10+11 =$$

Ex 74: Calculate the sum

$$5 + 10 + 15 + 20 + 25 + 30 + 35 + 40 + 45 + 50 =$$

Ex 75: Calculate the sum

$$5 + 11 + 17 + 23 + 29 + 35 + 41 + 47 = \boxed{}$$

G.2 CALCULATING SUMS OF ARITHMETIC SEQUENCES: LEVEL 2

Ex 76: Calculate the sum

$$3 + 7 + 11 + 15 + \dots + 103 =$$

Ex 77: Calculate the sum

$$6 + 9 + 12 + \dots + 48 =$$

Ex 78: Calculate the sum

$$20 + 17 + 14 + \cdots + (-1) =$$

Ex 79: Calculate the sum

$$4 + 8 + 12 + \dots + 40 =$$

H SUM OF AN GEOMETRIC SEQUENCE

H.1 CALCULATING SUMS OF GEOMETRIC SEQUENCES BY DIRECT ADDITION

Ex 80: Calculate the sum by adding the terms directly

$$1 + 2 + 4 + 8 + 16 =$$

Ex 81: Calculate the sum by adding the terms directly $3^0 + 3^1 + 3^2 + 3^3 + 3^4 + 3^5 =$

Ex 82: Calculate the sum by adding the terms directly

$$2^0 + 2^1 + 2^2 + 2^3 + 2^4 + 2^5 =$$

Ex 83: Calculate the sum by adding the terms directly

$$2\times 10^{0} + 2\times 10^{1} + 2\times 10^{2} + 2\times 10^{3} + 2\times 10^{4} = \boxed{}$$

H.2 CALCULATING SUMS OF GEOMETRIC SEQUENCES: LEVEL 1

Ex 84: Calculate the sum

$$3^0 + 3^1 + 3^2 + 3^3 + 3^4 + \dots + 3^{10} =$$

Ex 85: Calculate the sum

$$2^0 + 2^1 + 2^2 + 2^3 + 2^4 + \dots + 2^9 =$$

Ex 86: Calculate the sum

$$3 \times 5^0 + 3 \times 5^1 + 3 \times 5^2 + \dots + 3 \times 5^6 + 3 \times 5^7 =$$

Ex 87: Calculate the sum

$$5 \times 4^0 + 5 \times 4^1 + 5 \times 4^2 + \dots + 5 \times 4^8 =$$

H.3 CALCULATING SUMS OF GEOMETRIC SEQUENCES: LEVEL 2

Ex 88: Calculate the sum

$$1 + 2 + 4 + 8 + \dots + 256 =$$

Ex 89: Calculate the sum

$$2+6+18+54+162+486+1458 =$$

Ex 90: Calculate the sum

$$3 + 15 + \dots + 1171875 =$$