SEQUENCES

A NUMERICAL SEQUENCE

Definition Numerical Sequence

A numerical sequence, (u_n) is an ordered list of numbers (u_0, u_1, u_2, \dots) defined by a rule.

The number u_n is called the *n*th term of the sequence.

Ex: What is u_4 of this sequence?

n	0	1	2	3	4	5	
u_n	3	5	7	9	11	13	

Answer: $u_4 = 11$.

B DEFINITION USING A RECURSIVE RULE

Discover: Let's consider a sequence where the first term is 2, and each term is obtained by adding 3 to the previous term. The terms are:

We observe:

•
$$5 = 2 + 3 \longrightarrow u_1 = u_0 + 3 \longrightarrow u_{0+1} = u_0 + 3$$

•
$$8 = 5 + 3 \longrightarrow u_2 = u_1 + 3 \longrightarrow u_{1+1} = u_1 + 3$$

•
$$11 = 8 + 3 \longrightarrow u_3 = u_2 + 3 \longrightarrow u_{2+1} = u_2 + 3$$

•

• So the rule is $u_{n+1} = u_n + 3$

$$(u_0, u_1, u_2, u_3, \dots, u_n, u_{n+1}, \dots)$$

Definition Recursive Rule

A sequence can be defined by:

- the first term (starting number): u_0
- a recursive rule that tells how to obtain each term from the previous one:

$$u_{n+1} =$$
expression in u_n

Ex: Write the recursive rule when each term is obtained by adding 2 to the previous term.

Answer:

$$u_{n+1} = u_n + 2$$

C DEFINITION USING AN EXPLICIT RULE

Definition Explicit Rule

A sequence can also be defined by an explicit rule (or explicit formula), which gives a direct formula for the nth term in terms of n:

$$u_n =$$
expression in n

Ex: Consider the sequence defined by the explicit formula: $u_n = 3n + 2$. Write the first five terms of this sequence.

Answer:

• For n = 0:

$$u_0 = 3 \times 0 + 2$$

= 0 + 2
= 2

• For n = 1:

$$u_1 = 3 \times 1 + 2$$

= 3 + 2
= 5

• For n=2:

$$u_2 = 3 \times 2 + 2$$

= 6 + 2
= 8

• For n=3:

$$u_3 = 3 \times 3 + 2$$

= 9 + 2
= 11

• For n=4:

$$u_4 = 3 \times 4 + 2$$

= 12 + 2
= 14

So the first five terms are: 2, 5, 8, 11, 14.

D ARITHMETIC SEQUENCES

Definition Arithmetic Sequence -

An arithmetic sequence is a sequence where the difference between consecutive terms is constant. This constant is called the **common difference** and is denoted by d.

• The recursive rule is: $u_{n+1} = u_n + d$

• The explicit formula is: $u_n = u_0 + nd$

Ex: Determine if the sequence (2,5,8,11,14,...) is arithmetic and find the common difference d if it is.

Answer:

The differences between consecutive terms are: 5-2=3, 8-5=3, 11-8=3, 14-11=3. Since the difference is constant and equal to 3, the sequence is arithmetic with d=3.

E GEOMETRIC SEQUENCES

Definition Geometric Sequence -

An **geometric sequence** is a sequence where the ratio between consecutive terms is constant. This constant is called the **common ratio** and is denoted by r.

- The recursive rule is: $u_{n+1} = u_n \times r$
- The explicit formula is: $u_n = u_0 \times r^n$

Ex: Determine if the sequence $(2, 6, 18, 54, 162, \dots)$ is geometric and find the common ratio r if it is.

Answer:

$$(2,6,18,54,\ldots)$$

The ratios between consecutive terms are: $6 \div 2 = 3$, $18 \div 6 = 3$, $54 \div 18 = 3$, $162 \div 54 = 3$. Since the ratio is constant and equal to 3, the sequence is geometric with r = 3.

F SERIES

Definition **Series**

A series is the sum of the terms of a sequence.

$$S_n = u_0 + u_1 + u_2 + \ldots + u_n$$
$$= \sum_{i=0}^n u_i$$

G SUM OF AN ARITHMETIC SEQUENCE

Discover: We want to calculate

$$S_{19} = \overbrace{5 + 10 + 15 + \ldots + 90 + 95 + 100}^{20 \text{ terms}}$$

The first term is $u_0 = 5$ and the last term is $u_{19} = 100$. However, we can also write:

$$S_{19} = 5 + 10 + 15 + \dots + 90 + 95 + 100$$

+ $S_{19} = 100 + 95 + 90 + \dots + 15 + 10 + 5$ (reversing the terms)
 $2S_{19} = 105 + 105 + 105 + \dots + 105 + 105 + 105$ (adding)
 $2S_{19} = 20 \times 105$ (20 times the same term)

So

$$S_{19} = \frac{20}{2} \times 105 = 1050$$

Proposition Sum of an Arithmetic Sequence -

The sum of an arithmetic sequence is

$$S_n = \frac{n+1}{2} \left(u_0 + u_n \right)$$

H SUM OF AN GEOMETRIC SEQUENCE

Proposition Sum of a Geometric Sequence

The sum of a geometric sequence is

$$S_n = u_0 \cdot \frac{1 - r^{n+1}}{1 - r}$$

where r is the common ratio.

4