A NUMERICAL SEQUENCE

A.1 FINDING u_n

Ex 1:

n	1	2	3	4	5	6
u_n	3	5	7	9	11	13

What is u_4 ?

9

Answer: $u_4 = 9$.

Ex 2:

n	1	2	3	4	5	6
u_n	2	6	12	20	30	42

What is u_5 ?

30

Answer: $u_5 = 30$.

Ex 3:

n	1	2	3	4	5	6	7	8
u_n	4	9	16	25	36	49	64	81

What is u_7 ?

64

Answer: $u_7 = 64$.

Ex 4:

n	1	2	3	4	5	6	7	8
u_n	1	3	7	15	31	63	127	255

What is u_8 ?

255

Answer: $u_8 = 255$.

A.2 FINDING u_n IN AN ARITHMETIC SEQUENCE

Ex 5: What is u_6 for this sequence?

	n	1	2	3	4	5	6
ĺ	u_n	3	5	7	9	11	13

Answer: $u_6 = 13$, because each term increases by 2.

Ex 6: What is u_6 for this sequence?

n	1	2	3	4	5	6
u_n	3	8	13	18	23	28

Answer: $u_6 = 28$, because each term increases by 5.

Ex 7: What is u_5 for this sequence?

n	1	2	3	4	5
u_n	20	18	16	14	12

Answer: $u_5 = 12$, because each term decreases by 2.

Ex 8: What is u_6 for this sequence?

n	1	2	3	4	5	6
u_n	80	70	60	50	40	30

Answer: $u_6 = 30$, because each term decreases by 10.

B DEFINITION USING A RECURSIVE RULE

B.1 CALCULATING THE FIRST TERMS

Ex 9: Write the sequence defined by: the first term is 7, and each term is obtained by adding 4 to the previous term.

$$(7, 11, 15, 19, 23, \dots)$$

Answer:

$$7 \xrightarrow{+4} 11 \xrightarrow{+4} 15 \xrightarrow{+4} 19 \xrightarrow{+4} 23$$

The sequence is: (7, 11, 15, 19, 23, ...).

Ex 10: Write the sequence defined by: the first term is 1, and each term is obtained by multiplying the previous term by 2.

$$(1, 2, 4, 8, 16, \dots)$$

Answer:

$$1 \xrightarrow{\times 2} 2 \xrightarrow{\times 2} 4 \xrightarrow{\times 2} 8 \xrightarrow{\times 2} 16$$

The sequence is: (1, 2, 4, 8, 16, ...).

Ex 11: Write the sequence defined by: the first term is 10, and each term is obtained by subtracting 5 from the previous term.

$$(\boxed{10}, \boxed{5}, \boxed{0}, \boxed{-5}, \boxed{-10}, \dots)$$

Answer:

$$10 \xrightarrow{-5} 5 \xrightarrow{-5} 0 \xrightarrow{-5} -5 \xrightarrow{-5} -10$$

The sequence is: (10, 5, 0, -5, -10, ...).

Ex 12: Write the sequence defined by: the first term is 2.5, and each term is obtained by adding 0.5 to the previous term.

$$(2.5, 3, 3.5, 4, 4.5, \dots)$$

Answer:

$$2.5 \xrightarrow{+0.5} 3 \xrightarrow{+0.5} 3.5 \xrightarrow{+0.5} 4 \xrightarrow{+0.5} 4.5$$

The sequence is: (2.5, 3, 3.5, 4, 4.5, ...).

B.2 IDENTIFYING THE RECURSIVE RULE

Ex 13: Given the sequence: (3, 5, 7, 9, 11, 13, ...)

- The first term is 3.
- The rule is Add 2

Answer:

- The first term is 3.
- The rule is add 2:

$$3 \xrightarrow{+2} 5 \xrightarrow{+2} 7 \xrightarrow{+2} 9 \xrightarrow{+2} 11 \xrightarrow{+2} 13$$

Ex 14: Given the sequence: (60, 55, 50, 45, 40, 35, ...)

- The first term is 60.
- The rule is **Subtract** 5

Answer:

- The first term is 60.
- The rule is subtract 5:

$$60 \xrightarrow{-5} 55 \xrightarrow{-5} 50 \xrightarrow{-5} 45 \xrightarrow{-5} 40 \xrightarrow{-5} 35$$

Ex 15: Given the sequence: (64, 32, 16, 8, 4, 2, ...)

- The first term is 64.
- The rule is **Divide** 2

Answer:

- The first term is 64.
- The rule is divide by 2:

$$64 \xrightarrow{\div 2} 32 \xrightarrow{\div 2} 16 \xrightarrow{\div 2} 8 \xrightarrow{\div 2} 4 \xrightarrow{\div 2} 2$$

Ex 16: Given the sequence: (1, 10, 100, 1000, 10000,...)

- The first term is 1.
- The rule is Multiply 10

4

- The first term is 1.
- The rule is multiply by 10:

$$1 \xrightarrow{\times 10} 10 \xrightarrow{\times 10} 100 \xrightarrow{\times 10} 1000 \xrightarrow{\times 10} 10000$$

B.3 IDENTIFYING THE RECURSIVE RULE IN GEOMETRIC PATTERNS

Ex 17: Observe the following pattern made with sticks:

Fill in the table below:

Diagram number	1	2	3	4
Number of sticks	3	5	7	9

What rule can you find for the number of sticks? Start with $\boxed{3}$ sticks. Add $\boxed{2}$ sticks for the next diagram.

Answer:

• For diagram number 1, the number of sticks is 3.

• For diagram number 2, the number of sticks is 5.

• For diagram number 3, the number of sticks is 7.

• For diagram number 4, the number of sticks is 9.

• Rule: Start with 3 sticks, and add 2 sticks for the next diagram.

Ex 18: Observe the following pattern made with sticks:

Fill in the table below:

Diagram number	1	2	3	4
Number of sticks	4	7	10	13

What rule can you find for the number of sticks? Start with $\boxed{4}$ sticks. Add $\boxed{3}$ sticks for the next diagram.

Answer:

• For diagram number 1, the number of sticks is 4.

• For diagram number 2, the number of sticks is 7.

• For diagram number 3, the number of sticks is 10.

• For diagram number 4, the number of sticks is 13.

• Rule: Start with 4 sticks, and add 3 sticks for the next diagram.

Ex 19: Observe the following pattern made with sticks:

Fill in the table below:

Diagram number	1	2	3	4
Number of sticks	6	11	16	21

What rule can you find for the number of sticks? Start with 6 sticks. Add 5 sticks for the next diagram.

Answer:

• Diagram 1: For 1 hexagon, the number of sticks is 6.

• Diagram 2: For 2 hexagons, the number of sticks is 11.

• Diagram 3: For 3 hexagons, the number of sticks is 16.

• **Diagram 4**: For 4 hexagons, the number of sticks is 21.

• Rule: Start with 6 sticks, and add 5 sticks for each additional hexagon.

Ex 20: Observe the following pattern made with sticks:

Fill in the table below:

Diagram number	1	2	3	4
Number of sticks	4	6	8	10

What rule can you find for the number of sticks? Start with $\boxed{4}$ sticks. Add $\boxed{2}$ sticks for the next diagram.

Answer:

• For diagram number 1, the number of sticks is 4.

• For diagram number 2, the number of sticks is 6.

• For diagram number 3, the number of sticks is 8.

• For diagram number 4, the number of sticks is 10.

• Rule: Start with 4 sticks, and add 2 sticks for each new diagram.

B.4 MODELING REAL SITUATIONS WITH SEQUENCES

Ex 21: A scientist observes a culture of bacteria. At the start, there are $u_0 = 5$ bacteria in a petri dish. Each day, the number of bacteria doubles.

Let u_n be the number of bacteria at the day n. What are the first five terms of the sequence (u_n) ?

- $u_1 = \boxed{10}$ bacteria
- $u_2 = \boxed{20}$ bacteria

- $u_3 = \boxed{40}$ bacteria
- $u_4 = 80$ bacteria
- $u_5 = \boxed{160}$ bacteria

Answer: The number of bacteria doubles each day:

- $u_1 = 2 \times u_0 = 2 \times 5 = 10$
- $u_2 = 2 \times u_1 = 2 \times 10 = 20$
- $u_3 = 2 \times u_2 = 2 \times 20 = 40$
- $u_4 = 2 \times u_3 = 2 \times 40 = 80$
- $u_5 = 2 \times u_4 = 2 \times 80 = 160$

Ex 22: Let u_n be the number of steps I have walked at the end of day n. On day 0, I walk $u_0 = 1000$ steps. Each day, I walk 500 more steps than the previous day.

What are the first terms of the sequence (u_n) ?

- $u_1 = \boxed{1500}$ steps
- $u_2 = 2000$ steps
- $u_3 = 2500$ steps
- $u_4 = \boxed{3000}$ steps
- $u_5 = 3500$ steps

Answer: The sequence increases by 500 steps each day.

- $u_1 = u_0 + 500 = 1000 + 500 = 1500$ steps
- $u_2 = u_1 + 500 = 1500 + 500 = 2000$ steps
- $u_3 = u_2 + 500 = 2000 + 500 = 2500$ steps
- $u_4 = u_3 + 500 = 2500 + 500 = 3000$ steps
- $u_5 = u_4 + 500 = 3000 + 500 = 3500$ steps

Ex 23: Suppose I deposit \$100 in a savings account. Each year, my amount is multiplied by 1.1 (that is, it increases by 10% every year).

Let u_n be the amount of money in the account after n years. What are the first five terms of the sequence (u_n) ?

- $u_0 = 100$ dollars
- $u_1 = |110| \text{ dollars}$
- $u_2 = \boxed{121}$ dollars
- $u_3 = \boxed{133.1}$ dollars
- $u_4 = |146.41|$ dollars

Answer: The amount increases by 10% each year, so it is multiplied by 1.1 each time:

- $u_0 = 100$
- $u_1 = 1.1 \times u_0 = 1.1 \times 100 = 110$

- $u_2 = 1.1 \times u_1 = 1.1 \times 110 = 121$
- $u_3 = 1.1 \times u_2 = 1.1 \times 121 = 133.1$
- $u_4 = 1.1 \times u_3 = 1.1 \times 133.1 = 146.41$

Ex 24: Let u_n be the amount of money I have at the beginning of week n. At the start, I have $u_0 = 20$ dollars. At the end of each week, my parents give me \$ 10 more. What are the first terms of the sequence (u_n) ?

- $u_1 = |30|$ dollars
- $u_2 = \boxed{40}$ dollars
- $u_3 = \boxed{50}$ dollars
- $u_4 = \boxed{60}$ dollars
- $u_5 = \boxed{70}$ dollars

Answer: The sequence increases by \$ 10 each week.

- $u_1 = u_0 + 10 = 20 + 10 = 30$ dollars
- $u_2 = u_1 + 10 = 30 + 10 = 40$ dollars
- $u_3 = u_2 + 10 = 40 + 10 = 50$ dollars
- $u_4 = u_3 + 10 = 50 + 10 = 60$ dollars
- $u_5 = u_4 + 10 = 60 + 10 = 70$ dollars

C DEFINITION USING AN EXPLICIT RULE

C.1 CALCULATING TERMS FROM AN EXPLICIT FORMULA

Ex 25: Consider the sequence defined by the explicit formula: $u_n = 3n + 2$.

Write the first four terms of this sequence.

- $u_0 = \boxed{2}$
- $u_1 = \boxed{5}$
- $u_2 = \boxed{8}$
- $u_3 = \boxed{11}$

Answer:

• For n = 0:

$$u_0 = 3 \times 0 + 2$$
$$= 0 + 2$$
$$= 2$$

• For n = 1:

$$u_1 = 3 \times 1 + 2$$

= 3 + 2
= 5

• For n = 2:

$$u_2 = 3 \times 2 + 2$$
$$= 6 + 2$$
$$= 8$$

• For n = 3:

$$u_3 = 3 \times 3 + 2$$

= 9 + 2
= 11

So the first four terms are: 2, 5, 8, 11.

Ex 26: Consider the sequence defined by the explicit formula: $u_n = -10n + 100$.

Write the first four terms of this sequence.

•
$$u_0 = \boxed{100}$$

•
$$u_1 = \boxed{90}$$

•
$$u_2 = 80$$

•
$$u_3 = \boxed{70}$$

Answer:

• For n = 0:

$$u_0 = -10 \times 0 + 100$$
$$= 0 + 100$$
$$= 100$$

• For n = 1:

$$u_1 = -10 \times 1 + 100$$

= -10 + 100
= 90

• For n=2:

$$u_2 = -10 \times 2 + 100$$
$$= -20 + 100$$
$$= 80$$

• For n = 3:

$$u_3 = -10 \times 3 + 100$$
$$= -30 + 100$$
$$= 70$$

So the first four terms are: 100, 90, 80, 70.

Ex 27: Consider the sequence defined by the explicit formula: $u_n = n^2 + 2$.

Write the first four terms of this sequence.

•
$$u_0 = 2$$

•
$$u_1 = \boxed{3}$$

•
$$u_2 = 6$$

•
$$u_3 = \boxed{11}$$

Answer:

• For n = 0:

$$u_0 = 0^2 + 2$$
$$= 0 + 2$$
$$= 2$$

• For n=1:

$$u_1 = 1^2 + 2$$
$$= 1 + 2$$
$$= 3$$

• For n = 2:

$$u_2 = 2^2 + 2$$
$$= 4 + 2$$
$$= 6$$

• For n=3:

$$u_3 = 3^2 + 2$$
$$= 9 + 2$$
$$= 11$$

So the first four terms are: 2, 3, 6, 11.

Ex 28: Consider the sequence defined by the explicit formula: $u_n = (n+1)n$.

Write the first four terms of this sequence.

•
$$u_0 = \boxed{0}$$

•
$$u_1 = \boxed{2}$$

•
$$u_2 = \boxed{6}$$

•
$$u_3 = \boxed{12}$$

Answer:

• For n = 0:

$$u_0 = (0+1) \times 0$$
$$= 1 \times 0$$
$$= 0$$

• For n = 1:

$$u_1 = (1+1) \times 1$$

= 2 × 1
= 2

• For n=2:

$$u_2 = (2+1) \times 2$$

= 3×2
= 6

• For n = 3:

$$u_3 = (3+1) \times 3$$

= 4×3
= 12

So the first four terms are: 0, 2, 6, 12.

C.2 MODELING REAL SITUATIONS WITH SEQUENCES

 \mathbf{Ex} **29:** You start with \$30 and each week your parent gives you \$10.

The amount of money you have after n weeks is given by the formula:

 $u_n = \text{Initial Amount} + \text{Nbr weeks} \times \text{Amount received each week}$ = $30 + n \times 10$ = 30 + 10n

where u_n is the amount after n weeks. How much money will you have after 20 weeks?

230 dollars

• After 20 weeks:

$$u_{20} = 30 + 10 \times 20$$
$$= 30 + 200$$
$$= 230$$

So, after 20 weeks you will have \$230.

Answer:

• After 12 years:

$$u_{12} = 5 + 3 \times 12$$

= 5 + 36
= 41

So, after 12 years there will be 41 trees.

Ex 30: You deposit \$1 500 in a savings account that pays simple interest at a rate of 4% per year.

The amount of money in your account after n years is given by the formula:

 $u_n = \text{Initial Amount} + \text{Nbr years} \times \text{Percentage of the initial amount}$

$$= 1\,500 + n \times 0.04 \times 1\,500$$

$$= 1500 + 60n$$

where u_n is the amount after n years. What is your amount at year 20?

Answer:

• At year 20:

$$u_{20} = 1500 + 60 \times 20$$

= $1500 + 1200$
= 2700

So, your amount at year 20 is \$2 700.

Ex 31: You start a stamp collection with 12 stamps. Each month, you add 4 new stamps to your collection.

The number of stamps you have after n months is given by the formula:

 $u_n = \text{Initial number of stamps} + \text{Nbr months} \times \text{Stamps added per month}$

$$=12+n\times4$$

$$= 12 + 4n$$

where u_n is the number of stamps after n months. How many stamps will you have after 15 months?

Answer:

• After 15 months:

$$u_{15} = 12 + 4 \times 15$$

= 12 + 60
= 72

So, after 15 months you will have 72 stamps.

Ex 32: A school plants 5 trees in its garden to start. Every year, they plant 3 new trees.

The total number of trees after n years is given by the formula:

 $u_n = \text{Initial number of trees} + \text{Nbr years} \times \text{Trees planted per year}$

$$=5+n\times 3$$

$$= 5 + 3n$$

where u_n is the number of trees after n years. How many trees will there be after 12 years?