A NUMERICAL SEQUENCE

A.1 FINDING u_n

Ex 1:

n	1	2	3	4	5	6
u_n	3	5	7	9	11	13

What is u_4 ?

Ex 2:

n	1	2	3	4	5	6	
u_n	2	6	12	20	30	42	

What is u_5 ?

Ex 3:

n	1	2	3	4	5	6	7	8
u_n	4	9	16	25	36	49	64	81

What is u_7 ?

Ex 4:

n	1	2	3	4	5	6	7	8
u_n	1	3	7	15	31	63	127	255

What is u_8 ?

A.2 FINDING u_n In an arithmetic sequence

Ex 5: What is u_6 for this sequence?

n	1	2	3	4	5	6	
u_n	3	5	7	9	11		

Ex 6: What is u_6 for this sequence?

\overline{n}	1	2	3	4	5	6
u_n	3	8	13	18	23	

Ex 7: What is u_5 for this sequence?

n	1	2	3	4	5				
u_n	20	18	16	14					

Ex 8: What is u_6 for this sequence?

n	1	2	3	4	5	6
u_n	80	70	60	50	40	

B DEFINITION USING A RECURSIVE RULE

B.1 CALCULATING THE FIRST TERMS

Ex 9: Write the sequence defined by: the first term is 7, and each term is obtained by adding 4 to the previous term.

Ex 10: Write the sequence defined by: the first term is 1, and each term is obtained by multiplying the previous term by 2.

Ex 11: Write the sequence defined by: the first term is 10, and each term is obtained by subtracting 5 from the previous term.

Ex 12: Write the sequence defined by: the first term is 2.5, and each term is obtained by adding 0.5 to the previous term.

/		ı	ı		ı		
(,	,	,	,	,	•	•

B.2 CALCULATING THE FIRST TERMS

Ex 13: Calculate the first terms of the sequence defined by:

$$u_0 = 3$$
 and $u_{n+1} = u_n + 4$.

- $u_1 =$
- \bullet $u_2 =$
- $u_3 = |$
- $u_4 = |$
- \bullet $u_5 =$

Ex 14: Calculate the first terms of the sequence defined by:

$$u_0 = 3$$
 and $u_{n+1} = 2u_n$.

- $u_1 = |$
- $u_2 =$
- $u_3 =$
- $u_4 = |$
- $u_5 = |$

Ex 15: Calculate the first terms of the sequence defined by:

$$u_0 = 12$$
 and $u_{n+1} = u_n - 10$.

- $u_1 = |$
- $u_2 = |$
- $u_3 = |$
- $u_4 = |$

\bullet $u_5 = \boxed{}$
Ex 16: Calculate the first terms of the sequence defined by:
$u_0 = 64 \text{ and } u_{n+1} = \frac{u_n}{2}.$
\bullet $u_1 = $
• $u_2 = \boxed{}$
• $u_3 = \boxed{}$
\bullet $u_4 = $
$ullet$ $u_5=$
B.3 IDENTIFYING THE RECURSIVE RULE
Ex 17: Given the sequence: (3, 5, 7, 9, 11, 13,)
• The first term is .
□ Add
• The rule is ☐ Subtract ☐ Multiply ☐ Divide
Ex 18: Given the sequence: (60, 55, 50, 45, 40, 35,)
• The first term is
Ex 19: Given the sequence: $(64, 32, 16, 8, 4, 2,)$
• The first term is
Ex 20: Given the sequence: (1, 10, 100, 1000, 10000,)
• The first term is
\square Add \square Subtract \square

B.4 IDENTIFYING THE RECURSIVE RULE

Ex 21: Given the sequence: (3, 5, 7, 9, 11, 13, ...), what is its recursive rule?

- $u_0 = \boxed{}$.
- $u_{n+1} =$

Ex 22: Given the sequence: (100, 90, 80, 70, 60, ...), what is its recursive rule?

- $u_0 = \boxed{}$
- \bullet $u_{n+1} =$

Ex 23: Given the sequence: $(2, 6, 18, 54, 162, \dots)$, what is its recursive rule?

- \bullet $u_0 =$
- $u_{n+1} =$

Ex 24: Given the sequence: (8, 4, 2, 1, 0.5, 0.25, ...), what is its recursive rule?

- $u_0 = \boxed{}$.
- $u_{n+1} =$

B.5 MODELING REAL SITUATIONS

Ex 25: A scientist observes a culture of bacteria. At the start, there are $u_0 = 5$ bacteria in a petri dish. Each day, the number of bacteria doubles.

Let u_n be the number of bacteria at the day n. What are the first three terms of the sequence (u_n) ?

- $u_1 =$ bacteria
- $u_2 = |$ | bacteria
- $u_3 =$ bacteria

What is its recursive rule?

$$u_{n+1} =$$

Ex 26: Each day, I walk more and more steps. On day 0, I walk $u_0 = 1000$ steps. Each day, I walk 500 steps more than the day before.

Let u_n be the number of steps I have walked at the end of day n. What are the first three terms of the sequence (u_n) ?

- $u_2 = \boxed{}$ steps

What is its recursive rule?

$$u_{n+1} =$$

• The rule is

☐ Multiply

 \square Divide

Ex 27: Suppose I deposit \$100 in a savings account. Each year, my amount is multiplied by 1.1 (that is, it increases by 10% each year). Let u_n be the amount of money in the account after n years. What are the first three terms of the sequence (u_n) ?	• $u_0 = $ • $u_1 = $ • $u_2 = $ • $u_3 = $
• $u_0 = $ dollars • $u_1 = $ dollars • $u_2 = $ dollars What is its recursive rule? $u_{n+1} = $	Ex 32: Consider the sequence defined by the explicit formula: $u_n = (n+1)n$. Write the first four terms of this sequence. • $u_0 = $ • $u_1 = $ • $u_2 = $
Ex 28: At the start, I have $u_0 = 20$ dollars. Each week, my parents give me \$10 more. Let u_n be the amount of money I have at the beginning of week n . What are the first three terms of the sequence (u_n) ?	• $u_3 =$ C.2 MODELING REAL SITUATIONS WITH SEQUENCES
• $u_1 = $ dollars • $u_2 = $ dollars • $u_3 = $ dollars What is its recursive rule? $u_{n+1} = $	Ex 33: You start with \$30 and each week your parent gives you \$10. The amount of money you have after n weeks is given by the formula: $u_n = \text{Initial Amount} + \text{Nbr weeks} \times \text{Amount received each week}$ $= 30 + n \times 10$ $= 30 + 10n$
C DEFINITION USING AN EXPLICIT RULE C.1 CALCULATING TERMS FROM AN EXPLICIT	where u_n is the amount after n weeks. How much money will you have after 20 weeks?
Ex 29: Consider the sequence defined by the explicit formula: $u_n = 3n + 2$. Write the first four terms of this sequence. • $u_0 = $ • $u_1 = $ • $u_2 = $	Ex 34: You deposit \$1500 in a savings account that pays simple interest at a rate of 4% per year. The amount of money in your account after n years is given by the formula: $u_n = \text{Initial Amount} + \text{Nbr years} \times \text{Percentage of the initial amount} = 1500 + n \times 0.04 \times 1500$ $= 1500 + 60n$ where u_n is the amount after n years. What is your amount at
 • u₃ =	gear 20? dollars Ex 35: You start a stamp collection with 12 stamps. Each month, you add 4 new stamps to your collection. The number of stamps you have after n months is given by the formula: $u_n = \text{Initial number of stamps} + \text{Nbr months} \times \text{Stamps added per}$ $= 12 + n \times 4$
• $u_3 =$ Ex 31: Consider the sequence defined by the explicit formula: $u_n = n^2 + 2$. Write the first four terms of this sequence.	$= 12 + 4n$ where u_n is the number of stamps after n months. How many stamps will you have after 15 months?

3

www.commeunjeu.com

Ex 36: A school plants 5 trees in its garden to start. Every year, they plant 3 new trees. The total number of trees after n years is given by the formula: $u_n = \text{Initial number of trees} + \text{Nbr years} \times \text{Trees planted per year}$ $= 5 + n \times 3$ = 5 + 3n

where u_n is the number of trees after n years. How many trees will there be after 12 years?

trees