A NUMERICAL SEQUENCE

A.1 FINDING u_n

Ex 1:

n	1	2	3	4	5	6
u_n	3	5	7	9	11	13

What is u_4 ?

9

Answer: $u_4 = 9$.

Ex 2:

n	1	2	3	4	5	6
u_n	2	6	12	20	30	42

What is u_5 ?

30

Answer: $u_5 = 30$.

Ex 3:

n	1	2	3	4	5	6	7	8
u_n	4	9	16	25	36	49	64	81

What is u_7 ?

64

Answer: $u_7 = 64$.

Ex 4:

n	1	2	3	4	5	6	7	8
u_n	1	3	7	15	31	63	127	255

What is u_8 ?

255

Answer: $u_8 = 255$.

A.2 FINDING u_n IN AN ARITHMETIC SEQUENCE

Ex 5: What is u_6 for this sequence?

	n	1	2	3	4	5	6
ĺ	u_n	3	5	7	9	11	13

Answer: $u_6 = 13$, because each term increases by 2.

Ex 6: What is u_6 for this sequence?

n	1	2	3	4	5	6
u_n	3	8	13	18	23	28

Answer: $u_6 = 28$, because each term increases by 5.

Ex 7: What is u_5 for this sequence?

n	1	2	3	4	5
u_n	20	18	16	14	12

Answer: $u_5 = 12$, because each term decreases by 2.

Ex 8: What is u_6 for this sequence?

n	1	2	3	4	5	6
u_n	80	70	60	50	40	30

Answer: $u_6 = 30$, because each term decreases by 10.

B DEFINITION USING A RECURSIVE RULE

B.1 CALCULATING THE FIRST TERMS

Ex 9: Write the sequence defined by: the first term is 7, and each term is obtained by adding 4 to the previous term.

$$(7, 11, 15, 19, 23, \dots)$$

Answer:

$$7 \xrightarrow{+4} 11 \xrightarrow{+4} 15 \xrightarrow{+4} 19 \xrightarrow{+4} 23$$

The sequence is: (7, 11, 15, 19, 23, ...).

Ex 10: Write the sequence defined by: the first term is 1, and each term is obtained by multiplying the previous term by 2.

$$(1, 2, 4, 8, 16, \dots)$$

Answer:

$$1 \xrightarrow{\times 2} 2 \xrightarrow{\times 2} 4 \xrightarrow{\times 2} 8 \xrightarrow{\times 2} 16$$

The sequence is: (1, 2, 4, 8, 16, ...).

Ex 11: Write the sequence defined by: the first term is 10, and each term is obtained by subtracting 5 from the previous term.

$$(10, 5, 0, -5, -10, \dots)$$

Answer:

$$10 \xrightarrow{-5} 5 \xrightarrow{-5} 0 \xrightarrow{-5} -5 \xrightarrow{-5} -10$$

The sequence is: (10, 5, 0, -5, -10, ...).

Ex 12: Write the sequence defined by: the first term is 2.5, and each term is obtained by adding 0.5 to the previous term.

$$(2.5, 3, 3.5, 4, 4.5, \dots)$$

Answer:

$$2.5 \xrightarrow{+0.5} 3 \xrightarrow{+0.5} 3.5 \xrightarrow{+0.5} 4 \xrightarrow{+0.5} 4.5$$

The sequence is: (2.5, 3, 3.5, 4, 4.5, ...).

B.2 CALCULATING THE FIRST TERMS

Ex 13: Calculate the first terms of the sequence defined by:

$$u_0 = 3$$
 and $u_{n+1} = u_n + 4$.

- $u_1 = \boxed{7}$
- $u_2 = \boxed{11}$
- $u_3 = \boxed{15}$
- $u_4 = \boxed{19}$
- $u_5 = 23$

Answer:

$$3 \xrightarrow{+4} 7 \xrightarrow{+4} 11 \xrightarrow{+4} 15 \xrightarrow{+4} 19 \xrightarrow{+4} 23$$

- $u_1 = u_0 + 4 = 3 + 4 = 7$
- $u_2 = u_1 + 4 = 7 + 4 = 11$
- $u_3 = u_2 + 4 = 11 + 4 = 15$
- $u_4 = u_3 + 4 = 15 + 4 = 19$
- $u_5 = u_4 + 4 = 19 + 4 = 23$

Ex 14: Calculate the first terms of the sequence defined by:

$$u_0 = 3$$
 and $u_{n+1} = 2u_n$.

- $u_1 = 6$
- $u_2 = \boxed{12}$
- $u_3 = 24$
- $u_4 = \boxed{48}$
- $u_5 = 96$

Answer:

$$3 \xrightarrow{\times 2} 6 \xrightarrow{\times 2} 12 \xrightarrow{\times 2} 24 \xrightarrow{\times 2} 48 \xrightarrow{\times 2} 96$$

- $u_1 = 2u_0 = 2 \times 3 = 6$
- $u_2 = 2u_1 = 2 \times 6 = 12$
- $u_3 = 2u_2 = 2 \times 12 = 24$
- $u_4 = 2u_3 = 2 \times 24 = 48$
- $u_5 = 2u_4 = 2 \times 48 = 96$

Ex 15: Calculate the first terms of the sequence defined by: $u_0 = 12$ and $u_{n+1} = u_n - 10$.

- $u_1 = \boxed{2}$
- $u_2 = \boxed{-8}$
- $u_3 = \boxed{-18}$
- $u_4 = \boxed{-28}$
- $u_5 = \boxed{-38}$

Answer:

$$12 \xrightarrow{-10} 2 \xrightarrow{-10} -8 \xrightarrow{-10} -18 \xrightarrow{-10} -28 \xrightarrow{-10} -38$$

- $u_1 = u_0 10 = 12 10 = 2$
- $u_2 = u_1 10 = 2 10 = -8$
- $u_3 = u_2 10 = -8 10 = -18$
- $u_4 = u_3 10 = -18 10 = -28$
- $u_5 = u_4 10 = -28 10 = -38$

Ex 16: Calculate the first terms of the sequence defined by:

$$u_0 = 64$$
 and $u_{n+1} = \frac{u_n}{2}$.

- $u_1 = 32$
- $u_2 = 16$
- $u_3 = 8$
- $u_4 = \boxed{4}$
- $u_5 = \boxed{2}$

Answer:

$$64 \xrightarrow{\div 2} 32 \xrightarrow{\div 2} 16 \xrightarrow{\div 2} 8 \xrightarrow{\div 2} 4 \xrightarrow{\div 2} 2$$

- $u_1 = \frac{u_0}{2} = \frac{64}{2} = 32$
- $u_2 = \frac{u_1}{2} = \frac{32}{2} = 16$
- $u_3 = \frac{u_2}{2} = \frac{16}{2} = 8$
- $u_4 = \frac{u_3}{2} = \frac{8}{2} = 4$
- $u_5 = \frac{u_4}{2} = \frac{4}{2} = 2$

B.3 IDENTIFYING THE RECURSIVE RULE

Ex 17: Given the sequence: (3, 5, 7, 9, 11, 13, ...)

- The first term is $\boxed{3}$.
- The rule is Add 2

Answer:

- The first term is 3.
- The rule is add 2:

$$3 \xrightarrow{+2} 5 \xrightarrow{+2} 7 \xrightarrow{+2} 9 \xrightarrow{+2} 11 \xrightarrow{+2} 13$$

Ex 18: Given the sequence: (60, 55, 50, 45, 40, 35, ...)

- The first term is 60.
- The rule is Subtract 5

Answer:

- The first term is 60.
- The rule is subtract 5:

$$60 \xrightarrow{-5} 55 \xrightarrow{-5} 50 \xrightarrow{-5} 45 \xrightarrow{-5} 40 \xrightarrow{-5} 35$$

Ex 19: Given the sequence: (64, 32, 16, 8, 4, 2, ...)

- The first term is 64.
- The rule is Divide 2

Answer:

- The first term is 64.
- The rule is divide by 2:

$$64 \xrightarrow{\div 2} 32 \xrightarrow{\div 2} 16 \xrightarrow{\div 2} 8 \xrightarrow{\div 2} 4 \xrightarrow{\div 2} 2$$

Ex 20: Given the sequence: (1, 10, 100, 1000, 10000, ...)

- The first term is 1.
- The rule is **Multiply** 10

Answer:

- The first term is 1.
- The rule is multiply by 10:

$$1 \xrightarrow{\times 10} 10 \xrightarrow{\times 10} 100 \xrightarrow{\times 10} 1000 \xrightarrow{\times 10} 10000$$

B.4 IDENTIFYING THE RECURSIVE RULE

Ex 21: Given the sequence: (3, 5, 7, 9, 11, 13, ...), what is its recursive rule?

- $u_0 = \boxed{3}$.
- $\bullet \ u_{n+1} = \boxed{u_n + 2}$

Answer:

- The first term is $u_0 = 3$.
- The rule is add 2:

$$(3,5,7,9,\ldots,u_n,u_{n+1},\ldots)$$

$$u_{n+1} = u_n + 2$$

Ex 22: Given the sequence: (100, 90, 80, 70, 60, ...), what is its recursive rule?

- $u_0 = \boxed{100}$.
- $\bullet \ u_{n+1} = \boxed{u_n 10}$

Answer:

- The first term is $u_0 = 100$.
- The rule is subtract 10:

$$(100, 90, 80, 70, \dots, u_n, u_{n+1}, \dots)$$

$$u_{n+1} = u_n - 10$$

Ex 23: Given the sequence: $(2, 6, 18, 54, 162, \dots)$, what is its recursive rule?

- $u_0 = \boxed{2}$.
- $\bullet \ u_{n+1} = \boxed{3 \times u_n}$

Answer:

- The first term is $u_0 = 2$.
- The rule is multiply by 3:

$$(2,6,18,54,\ldots,u_n,u_{n+1},\ldots)$$

$$u_{n+1} = 3 \times u_n$$

Ex 24: Given the sequence: (8, 4, 2, 1, 0.5, 0.25, ...), what is its recursive rule?

- $u_0 = 8$.
- $\bullet \ u_{n+1} = \boxed{u_n \div 2}$

Answer:

- The first term is $u_0 = 8$.
- The rule is divide by 2:

$$(8,4,2,1,0.5,\ldots,u_n,u_{n+1},\ldots)$$

$$u_{n+1} = \frac{u_n}{2}$$

B.5 MODELING REAL SITUATIONS

Ex 25: A scientist observes a culture of bacteria. At the start, there are $u_0 = 5$ bacteria in a petri dish. Each day, the number of bacteria doubles.

Let u_n be the number of bacteria at the day n. What are the first three terms of the sequence (u_n) ?

- $u_1 = \boxed{10}$ bacteria
- $u_2 = \boxed{20}$ bacteria
- $u_3 = \boxed{40}$ bacteria

What is its recursive rule?

$$u_{n+1} = \boxed{2 \times u_n}$$

Answer: The number of bacteria doubles each day:

- $u_1 = 2 \times u_0 = 2 \times 5 = 10$
- $u_2 = 2 \times u_1 = 2 \times 10 = 20$
- $u_3 = 2 \times u_2 = 2 \times 20 = 40$

The rule is multiply by 2:

$$u_{n+1} = 2 \times u_n$$

Ex 26: Each day, I walk more and more steps. On day 0, I walk $u_0 = 1000$ steps. Each day, I walk 500 steps more than the day before.

Let u_n be the number of steps I have walked at the end of day n. What are the first three terms of the sequence (u_n) ?

- $u_1 = |1500|$ steps
- $u_2 = 2000$ steps
- $u_3 = |2500|$ steps

What is its recursive rule?

$$u_{n+1} = \boxed{u_n + 500}$$

Answer: The number of steps increases by 500 each day:

- $u_1 = u_0 + 500 = 1000 + 500 = 1500$
- $u_2 = u_1 + 500 = 1500 + 500 = 2000$
- $u_3 = u_2 + 500 = 2000 + 500 = 2500$

The recursive rule is:

$$u_{n+1} = u_n + 500$$

Ex 27: Suppose I deposit \$100 in a savings account. Each year, my amount is multiplied by 1.1 (that is, it increases by 10% each year).

Let u_n be the amount of money in the account after n years. What are the first three terms of the sequence (u_n) ?

• $u_0 = \boxed{100}$ dollars

- $u_1 = \boxed{110}$ dollars
- $u_2 = \boxed{121}$ dollars

What is its recursive rule?

$$u_{n+1} = \boxed{1.1 \times u_n}$$

Answer: The amount increases by 10% each year, so it is multiplied by 1.1:

- $u_0 = 100$
- $u_1 = 1.1 \times u_0 = 1.1 \times 100 = 110$
- $u_2 = 1.1 \times u_1 = 1.1 \times 110 = 121$

The recursive rule is:

$$u_{n+1} = 1.1 \times u_n$$

Ex 28: At the start, I have $u_0 = 20$ dollars. Each week, my parents give me \$10 more.

Let u_n be the amount of money I have at the beginning of week n. What are the first three terms of the sequence (u_n) ?

- $u_1 = \boxed{30}$ dollars
- $u_2 = \boxed{40}$ dollars
- $u_3 = \boxed{50}$ dollars

What is its recursive rule?

$$u_{n+1} = \boxed{u_n + 10}$$

Answer: The sequence increases by \$10 each week:

- $u_1 = u_0 + 10 = 20 + 10 = 30$
- $u_2 = u_1 + 10 = 30 + 10 = 40$
- $u_3 = u_2 + 10 = 40 + 10 = 50$

The recursive rule is:

$$u_{n+1} = u_n + 10$$

C DEFINITION USING AN EXPLICIT RULE

C.1 CALCULATING TERMS FROM AN EXPLICIT FORMULA

Ex 29: Consider the sequence defined by the explicit formula: $u_n = 3n + 2$.

Write the first four terms of this sequence.

- $u_0 = \boxed{2}$
- $u_1 = 5$
- $u_2 = \boxed{8}$
- $u_3 = |11|$

Answer:

• For n=0:

$$u_0 = 3 \times 0 + 2$$

= 0 + 2
= 2

• For n = 1:

$$u_1 = 3 \times 1 + 2$$

= 3 + 2
= 5

• For n=2:

$$u_2 = 3 \times 2 + 2$$

= 6 + 2
= 8

• For n=3:

$$u_3 = 3 \times 3 + 2$$

= 9 + 2
= 11

So the first four terms are: 2, 5, 8, 11.

Ex 30: Consider the sequence defined by the explicit formula: $u_n = -10n + 100$.

Write the first four terms of this sequence.

•
$$u_0 = 100$$

•
$$u_1 = \boxed{90}$$

•
$$u_2 = \boxed{80}$$

•
$$u_3 = \boxed{70}$$

Answer:

• For n = 0:

$$u_0 = -10 \times 0 + 100$$

= 0 + 100
= 100

• For n = 1:

$$u_1 = -10 \times 1 + 100$$

= -10 + 100
= 90

• For n=2:

$$u_2 = -10 \times 2 + 100$$
$$= -20 + 100$$
$$= 80$$

• For n = 3:

$$u_3 = -10 \times 3 + 100$$
$$= -30 + 100$$
$$= 70$$

So the first four terms are: 100, 90, 80, 70.

Ex 31: Consider the sequence defined by the explicit formula: $u_n = n^2 + 2$.

Write the first four terms of this sequence.

$$\bullet \ u_0 = \boxed{2}$$

•
$$u_1 = \boxed{3}$$

•
$$u_2 = 6$$

•
$$u_3 = \boxed{11}$$

Answer:

• For n = 0:

$$u_0 = 0^2 + 2$$
$$= 0 + 2$$
$$= 2$$

• For n = 1:

$$u_1 = 1^2 + 2$$
$$= 1 + 2$$
$$= 3$$

• For n = 2:

$$u_2 = 2^2 + 2$$
$$= 4 + 2$$
$$= 6$$

• For n = 3:

$$u_3 = 3^2 + 2$$
$$= 9 + 2$$
$$= 11$$

So the first four terms are: 2, 3, 6, 11.

Ex 32: Consider the sequence defined by the explicit formula: $u_n = (n+1)n$.

Write the first four terms of this sequence.

•
$$u_0 = \boxed{0}$$

•
$$u_1 = \boxed{2}$$

•
$$u_2 = \boxed{6}$$

•
$$u_3 = \boxed{12}$$

Answer:

• For n = 0:

$$u_0 = (0+1) \times 0$$
$$= 1 \times 0$$
$$= 0$$

• For n = 1:

$$u_1 = (1+1) \times 1$$
$$= 2 \times 1$$
$$= 2$$

• For n = 2:

$$u_2 = (2+1) \times 2$$
$$= 3 \times 2$$
$$= 6$$

• For n = 3:

$$u_3 = (3+1) \times 3$$
$$= 4 \times 3$$
$$= 12$$

So the first four terms are: 0, 2, 6, 12.

C.2 MODELING REAL SITUATIONS WITH SEQUENCES

 \mathbf{Ex} 33: You start with \$30 and each week your parent gives you \$10

The amount of money you have after n weeks is given by the formula:

 $u_n = \text{Initial Amount} + \text{Nbr weeks} \times \text{Amount received each week}$

$$=30+n\times10$$

$$= 30 + 10n$$

where u_n is the amount after n weeks. How much money will you have after 20 weeks?

230 dollars

Answer:

• After 20 weeks:

$$u_{20} = 30 + 10 \times 20$$

= $30 + 200$
= 230

So, after 20 weeks you will have \$230.

Ex 34: You deposit \$1 500 in a savings account that pays simple interest at a rate of 4% per year.

The amount of money in your account after n years is given by the formula:

 $u_n = \text{Initial Amount} + \text{Nbr years} \times \text{Percentage of the initial amount}$

$$= 1500 + n \times 0.04 \times 1500$$

$$= 1500 + 60n$$

where u_n is the amount after n years. What is your amount at year 20?

2700 dollars

Answer:

• At year 20:

$$u_{20} = 1500 + 60 \times 20$$
$$= 1500 + 1200$$
$$= 2700$$

So, your amount at year 20 is \$2,700.

Ex 35: You start a stamp collection with 12 stamps. Each month, you add 4 new stamps to your collection.

The number of stamps you have after n months is given by the formula:

 $u_n = \text{Initial number of stamps} + \text{Nbr months} \times \text{Stamps added per month}$

$$=12+n\times4$$

$$= 12 + 4n$$

where u_n is the number of stamps after n months. How many stamps will you have after 15 months?

72 stamps

Answer:

• After 15 months:

$$u_{15} = 12 + 4 \times 15$$

= 12 + 60
= 72

So, after 15 months you will have 72 stamps.

Ex 36: A school plants 5 trees in its garden to start. Every year, they plant 3 new trees.

The total number of trees after n years is given by the formula:

 $u_n = \text{Initial number of trees} + \text{Nbr years} \times \text{Trees planted per year}$

$$=5+n\times3$$

$$= 5 + 3n$$

where u_n is the number of trees after n years. How many trees will there be after 12 years?

41 trees

Answer:

• After 12 years:

$$u_{12} = 5 + 3 \times 12$$

= 5 + 36
= 41

So, after 12 years there will be 41 trees.