SEQUENCES

A NUMERICAL SEQUENCE

Definition Numerical Sequence

A numerical sequence is an ordered list of numbers $(u_0, u_1, u_2, ...)$ defined by a rule.

n	0	1	2	
u_n	u_0	u_1	u_2	

The number u_n is called the *n*th term of the sequence.

Ex: What is u_4 of this sequence?

n	0	1	2	3	4	5	
u_n	3	5	7	9	11	13	

Answer: $u_4 = 11$.

B DEFINITION USING A RECURSIVE RULE

Discover: Let's consider a sequence where the first term is 2, and each term is obtained by adding 3 to the previous term. The terms are:

$$\begin{pmatrix} & & +3 & +3 & +3 \\ 2 & , & 5 & , & 8 & , & 11 & , \dots \end{pmatrix}$$

We observe:

•
$$5 = 2 + 3 \longrightarrow u_1 = u_0 + 3 \longrightarrow u_{0+1} = u_0 + 3$$

•
$$8 = 5 + 3 \longrightarrow u_2 = u_1 + 3 \longrightarrow u_{1+1} = u_1 + 3$$

•
$$11 = 8 + 3 \longrightarrow u_3 = u_2 + 3 \longrightarrow u_{2+1} = u_2 + 3$$

•

• So the rule is
$$u_{n+1} = u_n + 3$$

$$(u_0, u_1, u_2, u_3, \dots, u_n, u_{n+1}, \dots)$$

Definition Recursive Rule

A sequence can be defined by:

- the first term (starting number): u_0
- a recursive rule that tells how to obtain each term from the previous one:

$$u_{n+1} =$$
expression in u_n

Ex: Write the recursive rule when each term is obtained by adding 2 to the previous term.

Answer:

$$u_{n+1} = u_n + 2$$

C DEFINITION USING AN EXPLICIT RULE

Definition Explicit Rule —

A sequence can also be defined by an explicit rule (or explicit formula), which gives a direct formula for the nth term in terms of n:

 $u_n =$ expression in n

Ex: Consider the sequence defined by the explicit formula: $u_n = 3n + 2$. Write the first five terms of this sequence.

Answer:

• For
$$n = 0$$
:

$$u_0 = 3 \times 0 + 2$$

= 0 + 2
= 2

• For
$$n=1$$
:

$$u_1 = 3 \times 1 + 2$$

= 3 + 2
= 5

• For
$$n=2$$
:

$$u_2 = 3 \times 2 + 2$$

= 6 + 2
= 8

• For
$$n = 3$$
:

$$u_3 = 3 \times 3 + 2$$

= 9 + 2
= 11

• For
$$n=4$$
:

$$u_4 = 3 \times 4 + 2$$

= 12 + 2
= 14

So the first five terms are: 2, 5, 8, 11, 14.