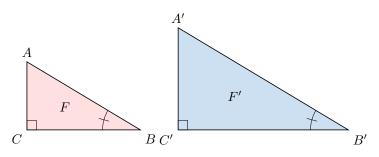
SIMILAR TRIANGLES

A ANGLE-ANGLE SIMILARITY

A.1 CHOOSING MATHEMATICAL ARGUMENTATION

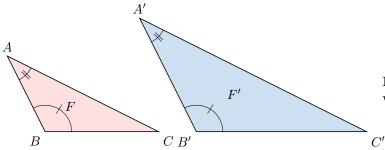
MCQ 1: Choose the correct mathematical argumentation for why the figures F and F' are similar.



- \Box The triangles look the same.
- \boxtimes Both figures are right triangles with a common marked angle, so the triangles F and F' are similar.
- \Box Both figures are right triangles, so the triangles F and F' are similar.
- $\hfill\square$ Both triangles have the same marked angle, so the triangles F and F' are similar.

Answer: The correct argumentation is that both figures are right triangles (each has a right angle at C and C') and both triangles have the same marked angle ($\angle ABC = \angle A'B'C'$). By the Angle-Angle (AA) similarity criterion, triangles F and F' are similar.

MCQ 2: Choose the correct mathematical argumentation for why the figures F and F' are similar.

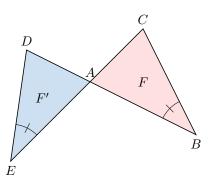


 \Box The triangles look the same.

- \Box Both figures are right triangles with a common marked angle, so the triangles F and F' are similar.
- $\hfill\square$ Both triangles have the same marked angle, so the triangles F and F' are similar.
- \boxtimes Both triangles have two marked angles in common, so the triangles F and F' are similar.

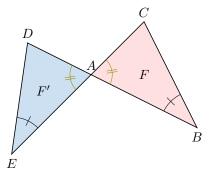
Answer: The correct argumentation is that both triangles have two marked angles in common ($\angle ABC = \angle A'B'C'$ and $\angle BAC = \angle B'A'C'$). By the Angle-Angle (AA) similarity criterion, triangles F and F' are similar.

MCQ 3: Choose the correct mathematical argumentation for why the figures F and F' are similar.

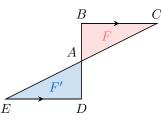


- \Box The triangles look the same.
- \boxtimes Both triangles have a common marked angle and a pair of vertically opposite angles, so the triangles F and F' are similar.
- \Box Both triangles have the same marked angle, so the triangles F and F' are similar.
- \Box Both figures have a pair of vertically opposite angles, so the triangles F and F' are similar.

Answer: The correct argumentation is that both triangles have a common marked angle ($\angle CBA = \angle AED$) and a pair of vertically opposite angles ($\angle BAC = \angle EAD$ at vertex A), which are equal. By the Angle-Angle (AA) similarity criterion, triangles F and F' are similar.

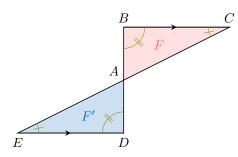


MCQ 4: Choose the correct mathematical argumentation for why the figures F and F' are similar.



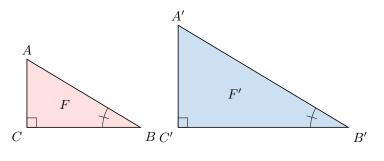
- \Box The triangles look the same.
- \Box Both triangles have a common marked angle and a pair of vertically opposite angles, so the triangles F and F' are similar.
- \boxtimes Since the lines are parallel, the corresponding angles in the two triangles are equal. So, the triangles F and F' are similar.
- \Box Both figures have a pair of vertically opposite angles, so the triangles F and F' are similar.

Answer: The correct argumentation is "Since the lines are parallel, the corresponding angles in the two triangles are equal $(\angle ABC = \angle ADE, \ \angle BCA = \angle AED)$. So, the triangles F and F'are similar." By the Angle-Angle (AA) similarity criterion, triangles F and F' are similar.



A.2 WRITING MATHEMATICAL ARGUMENTATION

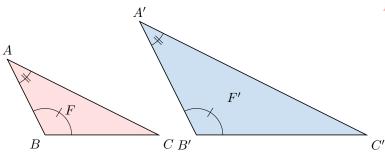
Ex 5: Justify with mathematical argumentation why the figures F and F' are similar.



Students should write a response such as: "Both figures are right triangles with a common marked angle, so triangles F and F' are similar by the Angle-Angle (AA) criterion." or " $\angle ABC = \angle A'B'C'$ and $\angle ACB = \angle A'C'B'$, so triangles F and F' are similar by the Angle-Angle (AA) criterion." The most important aspect is that they state that the two triangles have two equal angles, which ensures similarity by the AA criterion.

Answer: Both figures are right triangles (each has a right angle at C and C') and both triangles have the same marked angle $(\angle ABC = \angle A'B'C')$. By the Angle-Angle (AA) similarity criterion, triangles F and F' are similar.

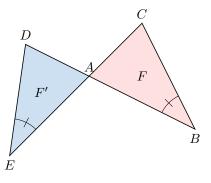
Ex 6: Justify with mathematical argumentation why the figures F and F' are similar.



Students should write a response such as: "Both triangles have two marked angles in common, so triangles F and F' are similar by the Angle-Angle (AA) criterion." or " $\angle ABC = \angle A'B'C'$ and $\angle BAC = \angle B'A'C'$, so triangles F and F' are similar by the Angle-Angle (AA) criterion." The most important aspect is that they state that the two triangles have two equal angles, which ensures similarity by the AA criterion.

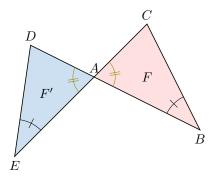
Answer: Both triangles have two marked angles in common $(\angle ABC = \angle A'B'C' \text{ and } \angle BAC = \angle B'A'C')$. By the Angle-Angle (AA) similarity criterion, triangles F and F' are similar.

Ex 7: Justify with mathematical argumentation why the figures F and F' are similar.

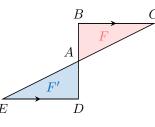


Students should write a response such as: "Both triangles have a common marked angle and a pair of vertically opposite angles, so triangles F and F' are similar by the Angle-Angle (AA) criterion." or " $\angle CBA = \angle AED$ and $\angle BAC = \angle EAD$, so triangles F and F' are similar by the Angle-Angle (AA) criterion." The most important aspect is that they state that the two triangles have two equal angles, which ensures similarity by the AA criterion.

Answer: Both triangles have a common marked angle ($\angle CBA = \angle AED$) and a pair of vertically opposite angles ($\angle BAC = \angle EAD$ at vertex A), which are equal. By the Angle-Angle (AA) similarity criterion, triangles F and F' are similar.

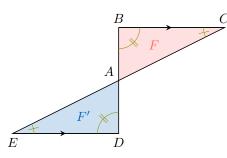


Ex 8: Justify with mathematical argumentation why the figures F and F' are similar.

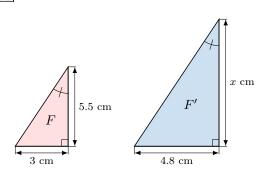


Students should write a response such as: "Since line \overline{BC} is parallel to line \overline{ED} , the corresponding angles are equal, so triangles F and F' are similar by the Angle-Angle (AA) criterion." or " $\angle ABC = \angle ADE$ and $\angle BCA = \angle AED$, so triangles F and F' are similar by the Angle-Angle (AA) criterion." The most important aspect is that they state that the two triangles have two equal angles, which ensures similarity by the AA criterion.

Answer: Since line \overleftarrow{BC} is parallel to line \overleftarrow{ED} , the corresponding angles are equal $(\angle ABC = \angle ADE, \angle BCA = \angle AED)$. By the Angle-Angle (AA) similarity criterion, triangles F and F' are similar.



A.3 FINDING UNKNOWN LENGTHS IN SIMILAR TRIANGLES



Find x

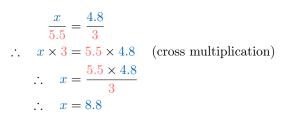
x = 8.8

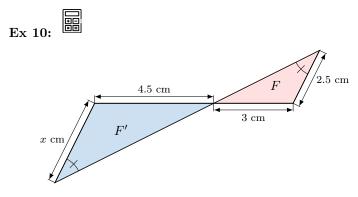
Answer:

- 1. Both figures are right triangles (each has a right angle).
 - Both triangles have the same marked angle.

So the triangles F and F' are similar.

2. The ratios of the corresponding sides are equals:





Find x (use a calculator).

Answer:

1. • They share vertically opposite angles, which are equal.

x = 3.75

• They have a common marked angle.

By the Angle-Angle (AA) similarity criterion, triangles F and F' are similar.

2. The ratios of corresponding sides are equal:

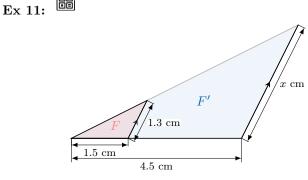
$$\frac{x}{2.5} = \frac{4.5}{3}$$

$$x \times 3 = 2.5 \times 4.5 \quad \text{(cross multiplication)}$$

$$x = \frac{2.5 \times 4.5}{3}$$

$$x = \frac{11.25}{3}$$

$$x = 3.75$$



Find x.

÷-

x = 3.9

Answer:

- 1. Since the lines are parallel, the corresponding angles in the two triangles are equal. So, the triangles F and F' are similar.
- 2. The ratios of corresponding sides are equal:

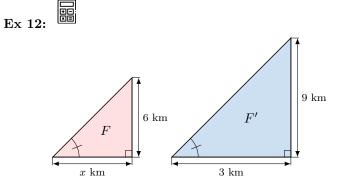
$$\frac{x}{1.3} = \frac{4.5}{1.5}$$

$$x \times 1.5 = 1.3 \times 4.5 \quad \text{(cross multiplication)}$$

$$x = \frac{1.3 \times 4.5}{1.5}$$

$$x = \frac{5.85}{1.5}$$

$$x = 3.9$$



Find x.

x = 2

Answer:

1. • They have right angles.

~

• They have a common marked angle.

By the Angle-Angle (AA) similarity criterion, triangles F and F' are similar.

2. The ratios of corresponding sides are equal:

$$\frac{3}{x} = \frac{9}{6}$$

$$x \times 9 = 3 \times 6 \quad (\text{cross multiplication})$$

$$x = \frac{3 \times 6}{9} \quad (\text{dividing by } 9)$$

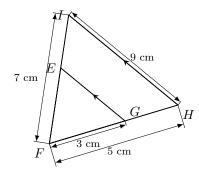
$$x = \frac{18}{9}$$

$$x = 2$$

B THALES'S THEOREM

B.1 APPLYING THALES'S THEOREM WITHOUT JUSTIFICATION

Ex 13: The lines \overleftarrow{GH} and \overleftarrow{EI} intersect at F, and the lines \overrightarrow{GE} and \overrightarrow{HI} are parallel. Given FG = 3 cm, FH = 5 cm, FI = 7 cm, and HI = 9 cm:



Calculate the lengths FE and EG.

$$FE = 4.2$$
 cm and $EG = 5.4$ cm.

Answer:

- 1. Since the lines \overleftarrow{GH} and \overleftarrow{EI} intersect at F, and $\overleftarrow{GE} \parallel \overleftarrow{HI}$, by Thales's theorem, triangles $\triangle FGE$ and $\triangle FHI$ are similar.
- 2. The ratios of corresponding sides are equal:

$$\frac{FH}{FG} = \frac{FI}{FE} = \frac{HI}{EG}$$
$$\frac{5}{3} = \frac{7}{FE} = \frac{9}{EG}$$

• For FE:

$$\frac{7}{FE} = \frac{5}{3}$$

$$FE \times 5 = 7 \times 3 \quad (\text{cross multiplication})$$

$$FE = \frac{7 \times 3}{5}$$

$$FE = 4.2 \text{ cm}$$

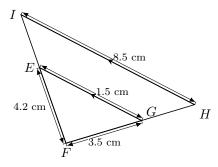
$$\frac{9}{EG} = \frac{5}{3}$$

$$EG \times 5 = 9 \times 3 \quad \text{(cross multiplication)}$$

$$EG = \frac{9 \times 3}{5}$$

$$EG = 5.4 \text{ cm}$$

Ex 14: The lines \overleftarrow{GH} and \overleftarrow{EI} intersect at F, and the lines \overrightarrow{GE} and \overrightarrow{HI} are parallel. Given FG = 3.5 cm, FE = 4.2 cm, EG = 1.5 cm, and HI = 8.5 cm:



Calculate the lengths FI and FH.

• For EG:

FI = 7.14 cm and FH = 5.95 cm.

Answer:

- 1. Since the lines \overleftarrow{GH} and \overleftarrow{EI} intersect at F, and $\overleftarrow{GE} \parallel \overleftarrow{HI}$, by Thales's theorem, triangles $\triangle FGE$ and $\triangle FHI$ are similar.
- 2. The ratios of corresponding sides are equal:

Ex 15: A folding stool is modeled geometrically with segments \overline{CB} and \overline{AD} for the metal frame and segment \overline{CD} for the fabric seat. Given CG = DG = 30 cm, AG = BG = 45 cm, and AB = 51 cm, and knowing that the seat \overline{CD} is parallel to the ground represented by \overline{AB} :

(°±°)

Determine the length of the seat CD.

$$CD = 34$$
 cm

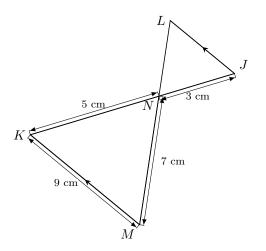
Answer:

- 1. Since the lines \overrightarrow{AD} and \overrightarrow{BC} intersect at G, and $\overrightarrow{AB} \parallel \overrightarrow{CD}$, by Thales's theorem, triangles $\triangle GAB$ and $\triangle GCD$ are similar.
- 2. The ratios of corresponding sides are equal:

$$\frac{GD}{GA} = \frac{GC}{GB} = \frac{CL}{AE}$$
$$\frac{30}{45} = \frac{30}{45} = \frac{CD}{51}$$
$$CD = \frac{51 \times 30}{45}$$
$$CD = 34 \text{ cm}$$

The length of the seat is 34 cm.

Ex 16: The lines \overrightarrow{JK} and \overrightarrow{LM} intersect at N, and the lines \overrightarrow{JL} and \overrightarrow{KM} are parallel. Given JN = 3 cm, NK = 5 cm, LM = 7 cm, and KM = 9 cm:



Calculate the lengths NL and LJ.

$$NL = 4.2$$
 cm and $LJ = 5.4$ cm.

Answer:

- 1. Since the lines \overrightarrow{JK} and \overrightarrow{LM} intersect at N, and $\overrightarrow{JL} \parallel \overleftarrow{KM}$, by Thales's theorem, triangles $\triangle NJL$ and $\triangle NKM$ are similar.
- 2. The ratios of corresponding sides are equal:

$$\frac{NK}{NJ} = \frac{NM}{NL} = \frac{KM}{LJ}$$
$$\frac{5}{3} = \frac{7}{NL} = \frac{9}{LJ}$$

• For NL:

$$\frac{7}{NL} = \frac{5}{3}$$

$$NL \times 5 = 7 \times 3 \quad \text{(cross multiplication)}$$

$$NL = \frac{7 \times 3}{5}$$

$$NL = 4.2 \text{ cm}$$

$$\frac{9}{LJ} = \frac{5}{3}$$

$$LJ \times 5 = 9 \times 3 \quad (\text{cross multiplication})$$

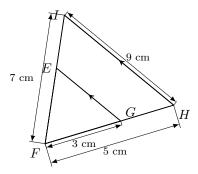
$$LJ = \frac{9 \times 3}{5}$$

$$LJ = 5.4 \text{ cm}$$

B.2 APPLYING THALES'S THEOREM

• For LJ:

Ex 17: The lines \overleftrightarrow{GH} and \overleftrightarrow{EI} intersect at F, and the lines \overleftrightarrow{GE} and \overleftrightarrow{HI} are parallel. Given FG = 3 cm, FH = 5 cm, FI = 7 cm, and HI = 9 cm:



Calculate the lengths FE and EG. Justify.

Students should apply Thales's theorem, stating that $\triangle FGE \sim \triangle FHI$ due to parallel lines $\overleftarrow{GE} \parallel \overleftarrow{HI}$, and use the ratios of corresponding sides to find FE and EG. A complete response might be: "Since $\overleftarrow{GE} \parallel \overleftarrow{HI}$ and \overleftarrow{GH} intersects \overleftarrow{EI} at $F, \triangle FGE \sim \triangle FHI$ by Thales's theorem. The ratio of corresponding sides is $\frac{FH}{FG} = \frac{5}{3}$. Thus, $\frac{FI}{FE} = \frac{7}{FE} = \frac{5}{3}$, so $FE = \frac{7 \times 3}{5} = 4.2$ cm, and $\frac{HI}{EG} = \frac{9}{EG} = \frac{5}{3}$, so $EG = \frac{9 \times 3}{5} = 5.4$ cm."

Answer:

- 1. Since the lines \overrightarrow{GH} and \overrightarrow{EI} intersect at F, and $\overrightarrow{GE} \parallel \overrightarrow{HI}$, by Thales's theorem, triangles $\triangle FGE$ and $\triangle FHI$ are similar.
- 2. The ratios of corresponding sides are equal:

$$\frac{FH}{FG} = \frac{FI}{FE} = \frac{HI}{EG}$$
$$\frac{5}{3} = \frac{7}{FE} = \frac{9}{EG}$$

• For FE:

$$\frac{7}{FE} = \frac{5}{3}$$

$$FE \times 5 = 7 \times 3 \quad \text{(cross multiplication)}$$

$$FE = \frac{7 \times 3}{5}$$

$$FE = 4.2 \text{ cm}$$

• For EG:

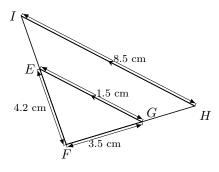
$$\frac{9}{EG} = \frac{5}{3}$$

$$EG \times 5 = 9 \times 3 \quad (\text{cross multiplication})$$

$$EG = \frac{9 \times 3}{5}$$

$$EG = 5.4 \text{ cm}$$

Ex 18: The lines \overleftrightarrow{GH} and \overleftrightarrow{EI} intersect at F, and the lines \overleftrightarrow{GE} and \overrightarrow{HI} are parallel. Given FG = 3.5 cm, FE = 4.2 cm, EG = 1.5 cm, and HI = 8.5 cm:



Calculate the lengths FI and FH. Justify.

Students should apply Thales's theorem, stating that $\triangle FGE \sim \triangle FHI$ due to parallel lines $\overrightarrow{GE} \parallel \overrightarrow{HI}$, and use the ratios of corresponding sides to find FI and FH. A complete response might be: "Since $\overrightarrow{GE} \parallel \overrightarrow{HI}$ and \overrightarrow{GH} intersects \overrightarrow{EI} at F, $\triangle FGE \sim \triangle FHI$ by Thales's theorem. The ratio of corresponding sides is $\frac{HI}{EG} = \frac{8.5}{1.5} = \frac{17}{3}$. Thus, $\frac{FI}{FE} = \frac{FI}{4.2} = \frac{17}{3}$, so $FI = 4.2 \times \frac{17}{3} = 7.14$ cm, and $\frac{FH}{FG} = \frac{FH}{3.5} = \frac{17}{3}$, so $FH = 3.5 \times \frac{17}{3} = 5.95$ cm."

Answer:

- 1. Since the lines \overleftarrow{GH} and \overleftarrow{EI} intersect at F, and $\overleftarrow{GE} \parallel \overleftarrow{HI}$, by Thales's theorem, triangles $\triangle FGE$ and $\triangle FHI$ are similar.
- 2. The ratios of corresponding sides are equal:

$$\frac{FH}{FG} = \frac{FI}{FE} = \frac{HI}{EG}$$
$$\frac{FH}{3.5} = \frac{FI}{4.2} = \frac{8.5}{1.5} = \frac{17}{3}$$

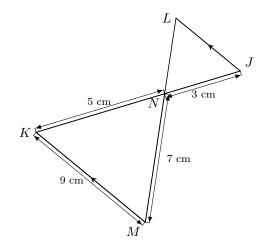
• For FI:

$$\frac{FI}{4.2} = \frac{17}{3}$$
$$FI = 4.2 \times \frac{17}{3}$$
$$FI = 7.14 \,\mathrm{cm}$$

• For FH:

$$\frac{FH}{3.5} = \frac{17}{3}$$
$$FH = 3.5 \times \frac{17}{3}$$
$$FH = 5.95 \,\mathrm{cm}$$

Ex 19: The lines \overrightarrow{JK} and \overrightarrow{LM} intersect at N, and the lines \overrightarrow{JL} and \overrightarrow{KM} are parallel. Given JN = 3 cm, NK = 5 cm, LM = 7 cm, and KM = 9 cm:



Calculate the lengths NL and LJ. Justify.

Students should apply Thales's theorem, stating that $\triangle NJL \sim \triangle NKM$ due to parallel lines $\overrightarrow{JL} \parallel \overrightarrow{KM}$, and use the ratios of corresponding sides to find NL and LJ. A complete response might be: "Since $\overrightarrow{JL} \parallel \overrightarrow{KM}$ and \overrightarrow{JK} intersects \overrightarrow{LM} at N, $\triangle NJL \sim \triangle NKM$ by Thales's theorem. The ratio of corresponding sides is $\frac{NK}{NJ} = \frac{5}{3}$. Thus, $\frac{NM}{NL} = \frac{7}{NL} = \frac{5}{3}$, so $NL = \frac{7 \times 3}{5} = 4.2$ cm, and $\frac{KM}{LJ} = \frac{9}{LJ} = \frac{5}{3}$, so $LJ = \frac{9 \times 3}{5} = 5.4$ cm."

Answer:

- 1. Since the lines \overrightarrow{JK} and \overrightarrow{LM} intersect at N, and $\overrightarrow{JL} \parallel \overleftarrow{KM}$, by Thales's theorem, triangles $\triangle NJL$ and $\triangle NKM$ are similar.
- 2. The ratios of corresponding sides are equal:

$$\frac{NK}{NJ} = \frac{NM}{NL} = \frac{KM}{LJ}$$
$$\frac{5}{3} = \frac{7}{NL} = \frac{9}{LJ}$$

• For NL:

$$\frac{7}{NL} = \frac{5}{3}$$

$$NL \times 5 = 7 \times 3 \quad (\text{cross multiplication})$$

$$NL = \frac{7 \times 3}{5}$$

$$NL = 4.2 \text{ cm}$$

• For LJ:

$$\frac{9}{LJ} = \frac{5}{3}$$

$$LJ \times 5 = 9 \times 3 \quad (\text{cross multiplication})$$

$$LJ = \frac{9 \times 3}{5}$$

$$LJ = 5.4 \text{ cm}$$

(°±°)

Ex 20: A folding stool is modeled geometrically with segments \overline{CB} and \overline{AD} for the metal frame and segment \overline{CD} for the fabric seat. Given CG = DG = 30 cm, AG = BG = 45 cm, and AB = 51 cm, and knowing that the seat \overline{CD} is parallel to the ground represented by \overline{AB} :

Calculate the length of the seat CD. Justify.

Students should apply Thales's theorem, stating that $\triangle GAB \sim \triangle GCD$ due to parallel lines $\overrightarrow{AB} \parallel \overrightarrow{CD}$, and use the ratios of corresponding sides to find CD. A complete response might be: "Since $\overrightarrow{AB} \parallel \overrightarrow{CD}$ and \overrightarrow{AD} intersects \overrightarrow{BC} at G, $\triangle GAB \sim \triangle GCD$ by Thales's theorem. The ratio of corresponding sides is $\frac{GD}{GA} = \frac{30}{45} = \frac{2}{3}$. Thus, $\frac{CD}{AB} = \frac{2}{3}$, so $CD = \frac{2}{3} \times 51 = 34$ cm."

Answer:

- 1. Since the lines \overrightarrow{AD} and \overrightarrow{BC} intersect at G, and $\overrightarrow{AB} \parallel \overrightarrow{CD}$, by Thales's theorem, triangles $\triangle GAB$ and $\triangle GCD$ are similar.
- 2. The ratios of corresponding sides are equal:

$$\frac{GD}{GA} = \frac{GC}{GB} = \frac{CD}{AB}$$
$$\frac{30}{45} = \frac{30}{45} = \frac{CD}{51}$$
$$CD = \frac{51 \times 30}{45}$$
$$CD = 34 \text{ cm}$$

The length of the seat is 34 cm.

(°±°)