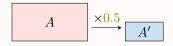

SIMILARITY

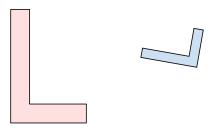
A WHAT IS A SIMILARITY?


Definition Similarity and Enlargement/Reduction

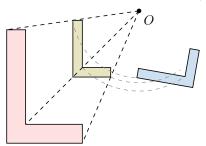
A similarity with scale factor k > 0 is a transformation that multiplies all distances by the same number k.

• If k > 1, the similarity is an **enlargement**.

• If 0 < k < 1, the similarity is a reduction.



• If k = 1, the similarity preserves all distances (it is an isometry), so the figure has the same size and shape.


Theorem Fundamental Transformations Similarity Theorem

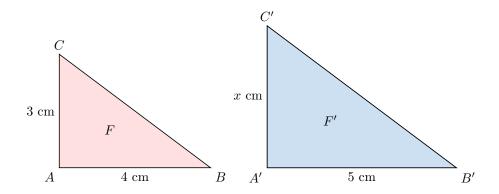
Any similarity can be expressed as the composition of one or more fundamental transformations (reflection, translation, rotation, and homothety).

Ex: The blue L is similar to the red L: it is a reduction of it.

The blue L is the image of the red L through a homothety of scale factor 0.5 ($L \to L'$) followed by a rotation ($L' \to L$).

B SIMILAR FIGURES

Definition Similar Figures


Two figures are similar if one can be obtained from the other by a similarity (an enlargement, a reduction, or an isometry).

Proposition Properties of Similar Figures

For similar figures:

- ullet The ratios of the lengths of corresponding sides are all equal to the same scale factor.
- The corresponding angles are equal.

Ex: The figures F and F' are similar. Find x.

 ${\it Answer:}$ The ratios of the corresponding sides are equal:

$$\frac{A'C'}{AC} = \frac{A'B'}{AB}$$
$$\frac{x}{3} = \frac{5}{4}$$
$$x = 3 \times \frac{5}{4}$$
$$x = 3.75 \text{ cm}$$