A DEFINITIONS

A.1 MATH ESCAPE ROOM: LEVEL 1

MCQ 1: For this Math escape room, the code is:

$$\bigcirc + 5 = 9$$

Which code do you use to enter?

- $\square \bigcirc = 2$
- $\boxtimes \bigcirc = 4$
- \square $\bigcirc = 5$
- $\square \bigcirc = 9$

Answer:

- For $\bigcirc = 2$:
- (2) + 5 = 97 = 9 (False)
- For $\bigcirc = 4$:
- (4) + 5 = 99 = 9 (True)
- For $\bigcirc = 5$:
- (5) + 5 = 910 = 9 (False)
- For $\bigcirc = 9$:
- (9) + 5 = 914 = 9 (False)

Therefore, the correct code to enter is $\bigcirc = 4$.

MCQ 2: For this Math escape room, the code is:

$$\triangle + 10 = 1 + 2 \times 6$$

Which code do you use to enter?

- $\boxtimes \triangle = 3$
- $\square \triangle = 5$
- $\square \triangle = 8$
- $\Box \triangle = 10$

Answer:

- For $\triangle = 3$:
- $(3) + 10 = 1 + 2 \times 6$ 13 = 1 + 1213 = 13 (True)
- For $\triangle = 5$:
- $(5) + 10 = 1 + 2 \times 6$ 15 = 1 + 1215 = 13 (False)

• For $\triangle = 8$:

$$(8) + 10 = 1 + 2 \times 6$$

 $18 = 1 + 12$
 $18 = 13$ (False)

• For $\triangle = 10$:

$$(10) + 10 = 1 + 2 \times 6$$

 $20 = 1 + 12$
 $20 = 13$ (False)

Therefore, the correct code to enter is $\triangle = 3$.

MCQ 3: For this Math escape room, the code is:

$$\Box + 5 = 2 \times 4 + 1$$

Which code do you use to enter?

- $\square \square = 6$
- $\square \square = 8$
- $\square \square = 5$
- $\boxtimes \square = 4$

Answer:

• For $\square = 6$:

$$(6) + 5 = 2 \times 4 + 1$$

 $11 = 8 + 1$
 $11 = 9$ (False)

• For $\square = 8$:

$$(8) + 5 = 2 \times 4 + 1$$

 $13 = 8 + 1$
 $13 = 9$ (False)

• For $\square = 5$:

$$(5) + 5 = 2 \times 4 + 1$$

 $10 = 8 + 1$
 $10 = 9$ (False)

• For $\square = 4$:

$$(4) + 5 = 2 \times 4 + 1$$

 $9 = 8 + 1$
 $9 = 9$ (True)

Therefore, the correct code to enter is $\square = 4$.

MCQ 4: For this Math escape room, the code is:

$$\bigcirc -4 = 3 \times 2 - 1$$

Which code do you use to enter?

- $\square \bigcirc = 7$
- $\square \bigcirc = 6$

$$\square \bigcirc = 5$$

$$\boxtimes \bigcirc = 9$$

Answer:

• For $\bigcirc = 7$:

$$(7) - 4 = 3 \times 2 - 1$$

$$3 = 6 - 1$$

$$3 = 5$$
 (False)

• For
$$\bigcirc = 6$$
:

$$(6) - 4 = 3 \times 2 - 1$$

$$2 = 6 - 1$$

$$2 = 5$$
 (False)

• For
$$\bigcirc = 5$$
:

$$(5) - 4 = 3 \times 2 - 1$$

$$1 = 6 - 1$$

$$1 = 5$$

• For $\bigcirc = 9$:

$$(9) - 4 = 3 \times 2 - 1$$

$$5 = 6 - 1$$

$$5 = 5$$
 (True)

Therefore, the correct code to enter is $\bigcirc = 9$.

A.2 MATH ESCAPE ROOM: LEVEL 2

MCQ 5: For this Math escape room, the code is:

$$2 \times \bigcirc -2 = \bigcirc +10$$

Which code do you use to enter?

$$\square \bigcirc = 8$$

$$\square \bigcirc = 10$$

$$\boxtimes \bigcirc = 12$$

$$\square$$
 $\bigcirc = 14$

Answer:

• For $\bigcirc = 8$:

$$2 \times (8) - 2 = (8) + 10$$

$$16 - 2 = 8 + 10$$

$$14 = 18$$

• For $\bigcirc = 10$:

$$2 \times (10) - 2 = (10) + 10$$

$$20 - 2 = 10 + 10$$

$$18 = 20$$

• For $\bigcirc = 12$:

$$2 \times (12) - 2 = (12) + 10$$

$$24 - 2 = 12 + 10$$

$$22 = 22$$

• For $\bigcirc = 14$:

$$2 \times (14) - 2 = (14) + 10$$

$$28 - 2 = 14 + 10$$
$$26 = 24$$

Therefore, the correct code to enter is $\bigcirc = 12$.

MCQ 6: For this Math escape room, the code is:

$$3x + 7 = x + 19$$

Which code do you use to enter?

- $\square \ x=2$
- $\square \ x = 4$
- $\boxtimes x = 6$
- $\square \ x = 8$

Answer:

• For x = 2:

$$3 \times (2) + 7 = (2) + 19$$

$$6+7=2+19$$

$$13 = 21$$
 (False)

• For x = 4:

$$3 \times (4) + 7 = (4) + 19$$

$$12 + 7 = 4 + 19$$

$$19 = 23 (False)$$

• For x = 6:

$$3 \times (6) + 7 = (6) + 19$$

$$18 + 7 = 6 + 19$$

$$25 = 25 (True)$$

• For x = 8:

$$3 \times (8) + 7 = (8) + 19$$

$$24 + 7 = 8 + 19$$

$$31 = 27$$
 (False)

Therefore, the correct code to enter is x = 6.

MCQ 7: For this Math escape room, the code is:

$$2x - 2 = x + 10$$

Which code do you use to enter?

- $\square x = 6$
- $\square \ x = 8$
- $\square \ x = 10$
- $\boxtimes x = 12$

Answer:

• For x = 6:

$$2 \times (6) - 2 = (6) + 10$$

$$12 - 2 = 6 + 10$$

$$10 = 16 (False)$$

• For x = 8:

$$2 \times (8) - 2 = (8) + 10$$

 $16 - 2 = 8 + 10$
 $14 = 18$ (False)

• For x = 10:

$$2 \times (10) - 2 = (10) + 10$$

 $20 - 2 = 10 + 10$
 $18 = 20$ (False)

• For x = 12:

$$2 \times (12) - 2 = (12) + 10$$

 $24 - 2 = 12 + 10$
 $22 = 22$ (True)

Therefore, the correct code to enter is x = 12.

MCQ 8: For this Math escape room, the code is:

$$x \times (x - 2) = 24$$

Which code do you use to enter?

 $\boxtimes x = 6$

- $\square x = 7$
- $\Box x = 8$
- $\square \ x = 9$

Answer:

• For x = 6:

$$(6) \times ((6) - 2) = 24$$

 $6 \times 4 = 24$
 $24 = 24$ (True)

• For x = 7:

$$(7) \times ((7) - 2) = 24$$

 $7 \times 5 = 24$
 $35 = 24$ (False)

• For x = 8:

$$(8) \times ((8) - 2) = 24$$

 $8 \times 6 = 24$
 $48 = 24$ (False)

• For x = 9:

$$(9) \times ((9) - 2) = 24$$

 $9 \times 7 = 24$
 $63 = 24$ (False)

Therefore, the correct code to enter is x = 6.

A.3 MATH ESCAPE ROOM: LEVEL 3

MCQ 9: For this Math escape room, the code is:

$$x^2 - 4 = 0$$

Which code do you use to enter?

 $\boxtimes x = 2$

- $\square \ x = 3$
- $\square \ x = 4$
- $\Box x = 5$

Answer:

• For x = 2:

$$(2)^2 - 4 = 0$$

 $4 - 4 = 0$
 $0 = 0$ (True)

• For x = 3:

$$(3)^2 - 4 = 0$$

 $9 - 4 = 0$
 $5 = 0$ (False)

• For x = 4:

$$(4)^2 - 4 = 0$$

 $16 - 4 = 0$
 $12 = 0$ (False)

• For x = 5:

$$(5)^2 - 4 = 0$$

 $25 - 4 = 0$
 $21 = 0$ (False)

Therefore, the correct code to enter is x = 2.

MCQ 10: For this Math escape room, the code is:

$$x^2 - 2x + 1 = 0$$

Which code do you use to enter?

 $\boxtimes x = 0$

- $\Box x = 1$
- $\square \ x=2$
- $\square \ x = 3$

Answer:

• For x = 0:

$$(0)^{2} - 2 \times (0) + 1 = 0$$

 $0 - 0 + 1 = 0$
 $1 = 0$ (False)

• For x = 1:

$$(1)^2 - 2 \times (1) + 1 = 0$$

 $1 - 2 + 1 = 0$
 $0 = 0$ (True)

• For x = 2:

$$(2)^{2} - 2 \times (2) + 1 = 0$$

 $4 - 4 + 1 = 0$
 $1 = 0$ (False)

• For x = 3:

$$(3)^2 - 2 \times (3) + 1 = 0$$

 $9 - 6 + 1 = 0$
 $4 = 0$ (False)

Therefore, the correct code to enter is x = 1.

MCQ 11: For this Math escape room, the code is:

$$\frac{2x+1}{x-1} = 3$$

Which code do you use to enter?

- $\square \ x=2$
- $\square \ x = 3$
- $\boxtimes x = 4$
- $\square \ x = 5$

Answer:

• For x = 2:

$$\frac{2 \times (2) + 1}{(2) - 1} = 3$$

$$\frac{4 + 1}{2 - 1} = 3$$

$$\frac{5}{1} = 3$$

$$5 = 3 \text{ (False)}$$

• For x = 3:

$$\frac{2 \times (3) + 1}{(3) - 1} = 3$$

$$\frac{6 + 1}{3 - 1} = 3$$

$$\frac{7}{2} = 3$$

$$3.5 = 3 \text{ (False)}$$

• For x = 4:

$$\frac{2 \times (4) + 1}{(4) - 1} = 3$$

$$\frac{8 + 1}{4 - 1} = 3$$

$$\frac{9}{3} = 3$$

$$3 = 3 \text{ (True)}$$

• For x = 5:

$$\frac{2 \times (5) + 1}{(5) - 1} = 3$$

$$\frac{10 + 1}{5 - 1} = 3$$

$$\frac{11}{4} = 3$$

$$2.75 = 3 \quad \text{(False)}$$

Therefore, the correct code to enter is x = 4.

B SOLVING BY TRIAL AND ERROR

B.1 FINDING A SOLUTION: LEVEL 1

Ex 12: Consider the equation 2x + 3 = 11. Use the trial-and-error method to find a solution (try x = 1)

Use the trial-and-error method to find a solution (try $x = 2, 3, \ldots$).

$$x = \boxed{4}$$

Answer:

• Try x = 2:

$$2 \times (2) + 3 = 11$$

 $4 + 3 = 11$
 $7 = 11$ (False)

• Try x = 3:

$$2 \times (3) + 3 = 11$$

 $6 + 3 = 11$
 $9 = 11$ (False)

• Try x = 4:

$$2 \times (4) + 3 = 11$$

 $8 + 3 = 11$
 $11 = 11$ (True)

Therefore, a solution to the equation 2x + 3 = 11 is x = 4.

Ex 13: Consider the equation 3x - 5 = 10.

Use the trial-and-error method to find a solution (try $x = 4, 5, \ldots$).

$$x = \boxed{5}$$

Answer:

• Try x = 4:

$$3 \times (4) - 5 = 10$$

 $12 - 5 = 10$
 $7 = 10$ (False)

• Try x = 5:

$$3 \times (5) - 5 = 10$$

 $15 - 5 = 10$
 $10 = 10$ (True)

Therefore, a solution to the equation 3x - 5 = 10 is x = 5.

Ex 14: Consider the equation x(x-1)=6.

Use the trial-and-error method to find a solution (try $x=2,3,\ldots$).

$$x = \boxed{3}$$

Answer:

• Try x = 2:

(2)
$$\times$$
 ((2) - 1) = 6
2 \times 1 = 6
2 = 6 (False)

• Try x = 3:

$$(3) \times ((3) - 1) = 6$$

 $3 \times 2 = 6$
 $6 = 6$ (True)

Therefore, a solution to the equation x(x-1) = 6 is x = 3.

Ex 15: Consider the equation 2x - 3 = 5x - 9.

Use the trial-and-error method to find a solution (try $x=0,1,\ldots$).

$$x = \boxed{2}$$

Answer:

• Try x = 0:

$$2 \times (0) - 3 = 5 \times (0) - 9$$

 $0 - 3 = 0 - 9$
 $-3 = -9$ (False)

• Try x = 1:

$$2 \times (1) - 3 = 5 \times (1) - 9$$

 $2 - 3 = 5 - 9$
 $-1 = -4$ (False)

• Try x = 2:

$$2 \times (2) - 3 = 5 \times (2) - 9$$

 $4 - 3 = 10 - 9$
 $1 = 1$ (True)

Therefore, a solution to the equation 2x - 3 = 5x - 9 is x = 2.

B.2 FINDING A SOLUTION: LEVEL 2

Ex 16: Consider the equation $x^2 - 2x + 1 = 0$. Use the trial-and-error method to find a solution (try x = 0)

Use the trial-and-error method to find a solution (try x = 0, 1, ...).

$$x = \boxed{1}$$

Answer:

• Try x = 0:

$$(0)^2 - 2 \times (0) + 1 = 0$$

 $0 - 0 + 1 = 0$
 $1 = 0$ (False)

• Try x = 1:

$$(1)^2 - 2 \times (1) + 1 = 0$$

 $1 - 2 + 1 = 0$
 $0 = 0$ (True)

Therefore, a solution to the equation $x^2 - 2x + 1 = 0$ is x = 1.

Ex 17: Consider the equation $x^2 - 9 = 0$.

Use the trial-and-error method to find a solution (try $x = 2, 3, \ldots$).

$$x = \boxed{3}$$

Answer:

• Try x = 2:

$$(2)^2 - 9 = 0$$

 $4 - 9 = 0$
 $-5 = 0$ (False)

• Try x = 3:

$$(3)^2 - 9 = 0$$

 $9 - 9 = 0$
 $0 = 0$ (True)

Therefore, a solution to the equation $x^2 - 9 = 0$ is x = 3.

Ex 18: Consider the equation $\frac{x+2}{x-2} = 2$.

Use the trial-and-error method to find a solution (try x = 6, 3, 4).

$$x = \boxed{6}$$

Answer:

• Try x = 6:

$$\frac{6+2}{6-2} = 2$$

$$\frac{8}{4} = 2$$

$$2 = 2 \quad \text{(True)}$$

• Try x = 3:

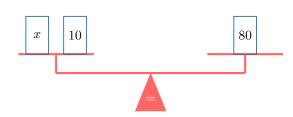
$$\frac{3+2}{3-2} = 2$$
 $\frac{5}{1} = 2$
 $5 = 2$ (False)

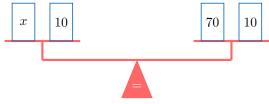
• Try x = 4:

$$\frac{4+2}{4-2} = 2$$
 $\frac{6}{2} = 2$
 $3 = 2$ (False)

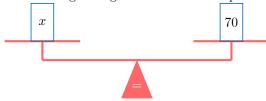
Therefore, a solution to the equation $\frac{x+2}{x-2} = 2$ is x = 6.

C EQUIVALENT EQUATIONS


C.1 SOLVING EQUATIONS BY ADDING OR SUBTRACTING


Ex 19: Solve for x:

$$x + 10 = 80$$
$$x = \boxed{70}$$


Answer:

• Balance scale:

Removing a weight of 10 from both pans

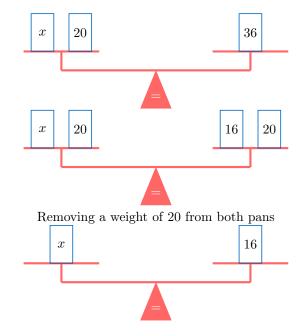
• Equivalent equations:

$$x + 10 = 80$$

$$x + 10 - 10 = 80 - 10$$

$$x + 0 = 70$$

$$x = 70$$


Ex 20: Solve for x:

$$x + 20 = 36$$

$$x = \boxed{16}$$

Answer:

• Balance scale:

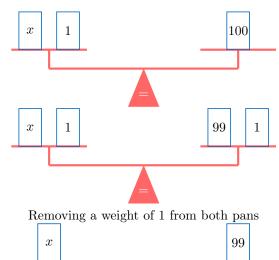
• Equivalent equations:

$$x + 20 = 36$$

$$x + 20 - 20 = 36 - 20$$

$$x + 0 = 16$$

$$x = 16$$


Ex 21: Solve for x:

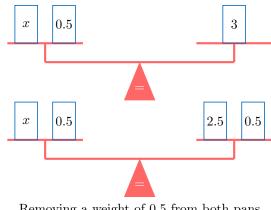
$$x + 1 = 100$$

$$x = 99$$

Answer:

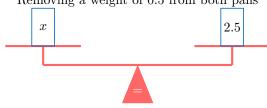
• Balance scale:

• Equivalent equations:


$$x + 1 = 100$$

 $x + 1 - 1 = 100 - 1$ (-1)
 $x + 0 = 99$
 $x = 99$

Ex 22: Solve for x:


$$x+0.5=3$$

$$x=\boxed{2.5} \mbox{ (write in decimal form)}$$

Answer:

• Balance scale:

Removing a weight of 0.5 from both pans

• Equivalent equations:

$$x + 0.5 = 3$$

$$x + 0.5 - 0.5 = 3 - 0.5$$

$$x + 0 = 2.5$$

$$x = 2.5$$
(-0.5)

Ex 23: Solve for x:

$$x - 10 = -20$$

$$x = -10$$

Answer:

$$x - 10 = -20$$

$$x - 10 + 10 = -20 + 10$$

$$x + 0 = -10$$

$$x = -10$$
(+10)

Ex 24: Solve for x:

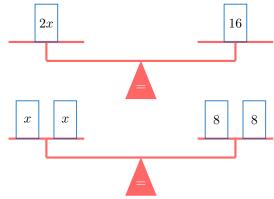
$$x - 5 = -2$$
$$x = \boxed{3}$$

Answer:

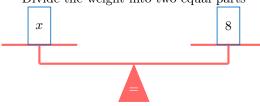
$$x-5 = -2$$

 $x-5+5 = -2+5$ (+5)
 $x+0=3$
 $x=3$

C.2 SOLVING EQUATIONS BY MULTIPLYING OR DIVIDING


Ex 25: Solve for x:

$$2x = 16$$


$$x = \boxed{8}$$

Answer:

• Balance scale:

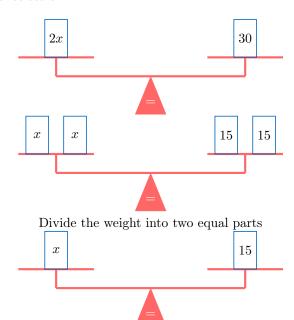
Divide the weight into two equal parts

• Equivalent equations:

$$2x = 16$$

$$\therefore \frac{2x}{2} = \frac{16}{2} \qquad (\div 2)$$

$$x = 8$$


Ex 26: Solve for x:

$$2x = 30$$

Answer:

• Balance scale:

• Equivalent equations:

$$2x = 30$$

$$\therefore \frac{2x}{2} = \frac{30}{2} \quad (\div 2)$$

$$x = 15$$

Ex 27: Solve for x:

$$3x = 27$$

$$x = 9$$

Answer:

$$3x = 27$$

$$\therefore \frac{3x}{3} = \frac{27}{3} \quad (\div 3)$$

Ex 28: Solve for x:

$$\frac{x}{4} = 5$$

$$x = 20$$

Answer:

$$\frac{x}{4} = 5$$

$$\therefore \quad \frac{x}{4} \times 4 = 5 \times 4 \qquad (\times 4)$$

$$x = 20$$

Ex 29: Solve for x:

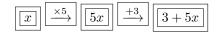
$$\frac{x}{3} = \frac{1}{2}$$

 $x = \boxed{1.5}$ (write in decimal form)

Answer:

$$\frac{x}{3} = \frac{1}{2}$$

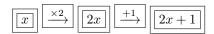
$$\therefore \quad \frac{x}{3} \times 3 = \frac{1}{2} \times 3 \qquad (\times 3)$$


$$x = \frac{3}{2}$$

$$x = 1.5$$

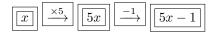
D DOING AND UNDOING EXPRESSIONS

D.1 DOING EXPRESSIONS


Ex 30: Do the expression 3 + 5x

Answer: To do the expression 3 + 5x, follow the steps:

$$x \xrightarrow{\times 5} 5x \xrightarrow{+3} 3 + 5x$$


Ex 31: Do the expression 2x + 1

Answer: To do the expression 2x + 1, follow the steps:

$$x \xrightarrow{\times 2} 2x \xrightarrow{+1} 2x + 1$$

Ex 32: Do the expression 5x-1

Answer: To do the expression 5x - 1, follow the steps:

$$x \xrightarrow{\times 5} 5x \xrightarrow{-1} 5x - 1$$

Ex 33: Do the expression $\frac{x}{2} + 3$

$$\boxed{x} \stackrel{\div 2}{\longrightarrow} \boxed{x/2} \boxed{+3} \boxed{x/2+3}$$

Answer: To do the expression $\frac{x}{2} + 3$, follow the steps:

$$x \xrightarrow{\div 2} x \xrightarrow{x} x \xrightarrow{+3} x + 3$$

Ex 34: Do the expression 2-5x

$$\boxed{x} \xrightarrow{\times (-5)} \boxed{-5x} \boxed{+2} \boxed{2-5x}$$

Answer: To do the expression 2-5x, follow the steps:

$$x \xrightarrow{\times (-5)} -5x \xrightarrow{+2} 2 -5x$$

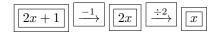
Ex 35: Do the expression 2(x-3)

$$\boxed{x} \xrightarrow{-3} \boxed{x-3} \boxed{\times 2}$$

Answer: To do the expression 2(x-3), follow the steps:

$$x \xrightarrow{-3} x - 3 \xrightarrow{\times 2} 2(x - 3)$$

Ex 36: Do the expression $\frac{x-3}{2}$


$$\boxed{x} \xrightarrow{-3} \boxed{x-3} \boxed{\div 2} \boxed{(x-3)/2}$$

Answer: To do the expression $\frac{x-3}{2}$, follow the steps:

$$x \xrightarrow{-3} x - 3 \xrightarrow{\div 2} x - 3$$

D.2 UNDOING EXPRESSIONS

Ex 37: Undo the expression 2x + 1

Answer.

• To do the expression 2x + 1:

$$x \xrightarrow{\times 2} 2x \xrightarrow{+1} 2x + 1$$

• To undo the expression 2x + 1, perform inverse operations in the reverse order:

$$\boxed{2x+1} \xrightarrow{-1} \boxed{2x} \xrightarrow{\div 2} \boxed{x}$$

Ex 38: Undo the expression 3x-2

$$\boxed{3x-2} \boxed{\stackrel{+2}{\longrightarrow}} \boxed{3x} \boxed{\stackrel{\div 3}{\longrightarrow}} \boxed{x}$$

Answer:

• To do the expression 3x - 2:

$$x \xrightarrow{\times 3} 3x \xrightarrow{-2} 3x - 2$$

• To undo the expression 3x - 2, perform inverse operations in the reverse order:

$$3x - 2 \xrightarrow{+2} 3x \xrightarrow{\div 3} x$$

Ex 39: Undo the expression $\frac{x}{3} + 2$

$$\boxed{x/3+2} \boxed{\xrightarrow{-2}} \boxed{x/3} \boxed{\times 3}$$

Answer:

• To do the expression $\frac{x}{2} + 2$:

$$\boxed{x} \xrightarrow{\div 3} \boxed{\frac{x}{3}} \xrightarrow{+2} \boxed{\frac{x}{3} + 2}$$

• To undo the expression $\frac{x}{3} + 2$, perform inverse operations in the reverse order:

$$\boxed{\frac{x}{3} + 2} \xrightarrow{-2} \boxed{\frac{x}{3}} \xrightarrow{\times 3} \boxed{x}$$

Ex 40: Undo the expression $\frac{x+2}{5}$

$$\boxed{(x+2)/5} \boxed{\stackrel{\times 5}{\longrightarrow}} \boxed{x+2} \boxed{\stackrel{-2}{\longrightarrow}} \boxed{x}$$

Answer:

• To do the expression $\frac{x+2}{5}$:

$$x \xrightarrow{+2} x+2 \xrightarrow{\div 5} x+2$$

• To undo the expression $\frac{x+2}{5}$, perform inverse operations in the reverse order:

$$\boxed{\frac{x+2}{5}} \xrightarrow{\times 5} \boxed{x+2} \xrightarrow{-2} \boxed{x}$$

E SOLVING LINEAR EQUATIONS

E.1 SOLVING LINEAR EQUATIONS: LEVEL 1

Ex 41: Solve for x:

$$2x + 1 = 7$$

$$x = \boxed{3}$$

Answer:

• To **do** the expression 2x + 1:

$$x \xrightarrow{\times 2} 2x \xrightarrow{+1} 2x + 1$$

• To **undo** the expression 2x + 1, do the inverse operations in reverse order:

$$\boxed{2x+1} \xrightarrow{-1} \boxed{2x} \xrightarrow{\div 2} \boxed{x}$$

So,

$$2x + 1 = 7$$

$$2x + 1 - 1 = 7 - 1 \quad (-1)$$

$$2x = 6$$

$$\frac{2x}{2} = \frac{6}{2} \quad (\div 2)$$

Ex 42: Solve for x:

$$2x - 4 = 5$$

$$x = 4.5$$

Answer:

• To **do** the expression 2x - 4:

$$x \xrightarrow{\times 2} 2x \xrightarrow{-4} 2x - 4$$

• To **undo** the expression 2x-4, do the inverse operations in reverse order:

$$2x-4$$
 $\xrightarrow{+4}$ $2x$ $\xrightarrow{\div 2}$ x

• So,

$$2x - 4 = 5$$

$$2x - 4 + 4 = 5 + 4 \quad (+4)$$

$$2x = 9$$

$$\frac{2x}{2} = \frac{9}{2} \quad (\div 2)$$

$$x = 4.5$$

Ex 43: Solve for x:

$$4x - 7 = 9$$

$$x = \boxed{4}$$

Answer:

• To **do** the expression 4x - 7:

$$x \xrightarrow{\times 4} 4x \xrightarrow{-7} 4x - 7$$

• To **undo** the expression 4x - 7, do the inverse operations in reverse order:

$$\boxed{4x-7} \xrightarrow{+7} \boxed{4x} \xrightarrow{\div 4} \boxed{x}$$

• So,

$$4x - 7 = 9$$

$$4x - 7 + 7 = 9 + 7 \quad (+7)$$

$$4x = 16$$

$$\frac{4x}{4} = \frac{16}{4} \quad (\div 4)$$

Ex 44: Solve for x:

$$3x + 10 = 4$$

$$x = \boxed{-2}$$

Answer:

• To **do** the expression 3x + 10:

$$\boxed{x} \xrightarrow{\times 3} \boxed{3x} \xrightarrow{+10} \boxed{3x+10}$$

• To **undo** the expression 3x + 10, do the inverse operations in reverse order:

$$3x + 10$$
 $\xrightarrow{-10}$ $3x$ $\xrightarrow{\div 3}$ x

• So,

$$3x + 10 = 4$$

$$3x + 10 - 10 = 4 - 10 \quad (-10)$$

$$3x = -6$$

$$\frac{3x}{3} = \frac{-6}{3} \quad (\div 3)$$

$$x = -2$$

E.2 SOLVING LINEAR EQUATIONS: LEVEL 2

Ex 45: Solve for x:

$$\frac{x-17}{3} = 10$$

$$x = \boxed{47}$$

Answer:

• To **do** the expression $\frac{x-17}{3}$:

$$x \xrightarrow{-17} x - 17 \xrightarrow{\div 3} x - 17$$

• To **undo** the expression $\frac{x-17}{3}$, do the inverse operations in reverse order:

$$\boxed{\frac{x-17}{3}} \xrightarrow{\times 3} \boxed{x-17} \xrightarrow{+17} \boxed{x}$$

• So,

$$\frac{x-17}{3} = 10$$

$$\frac{x-17}{3} \times 3 = 10 \times 3 \quad (\times 3)$$

$$x-17 = 30$$

$$x-17+17 = 30+17 \quad (+17)$$

$$x = 47$$

Ex 46: Solve for x:

$$\frac{x-2}{6} = \frac{2}{3}$$

$$x = \boxed{6}$$

Answer:

• To **do** the expression $\frac{x-2}{6}$:

$$\boxed{x} \xrightarrow{-2} \boxed{x-2} \xrightarrow{\div 6} \boxed{\frac{x-2}{6}}$$

• To **undo** the expression $\frac{x-2}{6}$, do the inverse operations in reverse order:

$$\boxed{\frac{x-2}{6}} \xrightarrow{\times 6} \boxed{x-2} \xrightarrow{+2} \boxed{x}$$

• So,

$$\frac{x-2}{6} = \frac{2}{3}$$

$$\frac{x-2}{6} \times 6 = \frac{2}{3} \times 6 \quad (\times 6)$$

$$x-2 = 4$$

$$x-2+2 = 4+2 \quad (+2)$$

$$x = 6$$

Ex 47: Solve for x:

$$4(x+2) = 40$$

$$x = 8$$

Answer:

• To **do** the expression 4(x+2):

$$x \xrightarrow{+2} x + 2 \xrightarrow{\times 4} 4(x+2)$$

• To **undo** the expression 4(x+2), do the inverse operations in reverse order:

$$\boxed{4(x+2)} \xrightarrow{\div 4} \boxed{x+2} \xrightarrow{-2} \boxed{x}$$

• So,

$$4(x + 2) = 40$$

$$4(x + 2) \div 4 = 40 \div 4 \quad (\div 4)$$

$$x + 2 = 10$$

$$x + 2 - 2 = 10 - 2 \quad (-2)$$

$$x = 8$$

Ex 48: Solve for x:

$$\frac{2x+5}{4} = 3$$
$$x = \boxed{3.5}$$

Answer:

• To **do** the expression $\frac{2x+5}{4}$:

$$x \xrightarrow{\times 2} 2x \xrightarrow{+5} 2x + 5 \xrightarrow{\div 4} 2x + 5$$

• To **undo** the expression $\frac{2x+5}{4}$, do the inverse operations in reverse order:

$$\boxed{\frac{2x+5}{4}} \xrightarrow{\times 4} \boxed{2x+5} \xrightarrow{-5} \boxed{2x} \xrightarrow{\div 2} \boxed{x}$$

• So,

$$\frac{2x+5}{4} = 3$$

$$\frac{2x+5}{4} \times 4 = 3 \times 4 \quad (\times 4)$$

$$2x+5 = 12$$

$$2x+5-5 = 12-5 \quad (-5)$$

$$2x = 7$$

$$\frac{2x}{2} = \frac{7}{2} \quad (\div 2)$$

$$x = 3.5$$

F SOLVING PRODUCT OF LINEAR EQUATIONS

F.1 SOLVING EQUATIONS USING THE NULL FACTOR LAW: LEVEL 1

Ex 49: Solve for x:

$$x(x+1) = 0$$

Give your answers in increasing order:

The set of solutions is $\{ \boxed{-1}, \boxed{0} \}$.

Answer:

$$x(x+1) = 0$$

$$x = 0 \text{ or } (x+1) = 0 \text{ (null factor law)}$$

$$x = 0 \text{ or } x = -1$$

The set of solutions is [-1,0]

Verification:

- for x = 0, 0(0+1) = 0
- for x = 0, $(-1)((-1) + 1) = (-1) \times 0 = 0$

Ex 50: Solve for x:

$$(x+2)(x-1) = 0$$

Give your answers in increasing order:

The set of solutions is $\{ -2, 1 \}$.

Answer:

$$(x+2)(x-1) = 0$$

 $x+2=0 \text{ or } x-1=0 \text{ (null factor law)}$
 $x=-2 \text{ or } x=1$

The set of solutions is [-2, 1]

Verification:

- For x = -2: $(-2+2) \times (-2-1) = 0 \times (-3) = 0$
- For x = 1: $(1+2) \times (1-1) = 3 \times 0 = 0$

Ex 51: Solve for x:

$$(x+6)(x-3) = 0$$

Give your answers in increasing order:

The set of solutions is $\{ -6, 3 \}$.

Answer:

$$(x+6)(x-3) = 0$$

 $x+6=0 \text{ or } x-3=0 \text{ (null factor law)}$
 $x=-6 \text{ or } x=3$

The set of solutions is $\boxed{\{-6, 3\}}$

Verification:

- For x = -6: $(-6+6) \times (-6-3) = 0 \times (-9) = 0$
- For x = 3: $(3+6) \times (3-3) = 9 \times 0 = 0$

Ex 52: Solve for x:

$$(x-1)(x-2) = 0$$

Give your answers in increasing order:

The set of solutions is $\{1, 2\}$.

Answer:

$$(x-1)(x-2) = 0$$

 $x-1 = 0$ or $x-2 = 0$ (null factor law)
 $x = 1$ or $x = 2$

The set of solutions is $\{1, 2\}$

Verification:

- For x = 1: $(1-1) \times (1-2) = 0 \times (-1) = 0$
- For x = 2: $(2-1) \times (2-2) = 1 \times 0 = 0$

F.2 SOLVING EQUATIONS USING THE NULL FACTOR LAW: LEVEL 2

Ex 53: Solve for x:

$$(2x+6)(x+2) = 0$$

Give your answers in increasing order:

The set of solutions is $\{ -3, -2 \}$.

Answer.

$$(2x+6)(x+2) = 0$$

 $2x+6=0$ or $x+2=0$ (null factor law)
 $2x = -6$ or $x = -2$
 $x = -3$ or $x = -2$

The set of solutions is $\{-3, -2\}$

Verification:

- For x = -3: $(2 \times (-3) + 6)((-3) + 2) = 0 \times (-1) = 0$
- For x = -2: $(2 \times (-2) + 6)((-2) + 2) = 2 \times 0 = 0$

Ex 54: Solve for x:

$$(x+2)(2x-1) = 0$$

Give your answers in increasing order:

The set of solutions is $\{\boxed{-2}, \boxed{\frac{1}{2}}\}$.

Answer:

$$(x+2)(2x-1) = 0$$

$$x+2=0 \text{ or } 2x-1=0 \text{ (null factor law)}$$

$$x=-2 \text{ or } 2x=1$$

$$x=\frac{1}{2}$$

The set of solutions is $\left\{-2, \frac{1}{2}\right\}$

Verification:

- For x = -2: $(-2+2)(2 \times (-2) 1) = 0 \times (-5) = 0$
- For $x = \frac{1}{2}$: $\left(\frac{1}{2} + 2\right) \left(2 \times \frac{1}{2} 1\right) = \frac{5}{2} \times 0 = 0$

Ex 55: Solve for x:

$$\left(\frac{x}{2} - 1\right)(2x + 2) = 0$$

Give your answers in increasing order:

The set of solutions is $\{-1, 2\}$.

Answer:

$$\left(\frac{x}{2} - 1\right)(2x + 2) = 0$$

$$\frac{x}{2} - 1 = 0 \text{ or } 2x + 2 = 0 \text{ (null factor law)}$$

$$\frac{x}{2} = 1 \text{ or } 2x = -2$$

$$x = 2 \text{ or } x = -1$$

The set of solutions is [-1, 2].

Verification:

• For
$$x = -1$$
: $\left(\frac{-1}{2} - 1\right) (2 \times (-1) + 2) = \left(-\frac{1}{2} - 1\right) (-2 + 2) = \left(-\frac{3}{2}\right) \times 0 = 0$

• For
$$x = 2$$
: $\left(\frac{2}{2} - 1\right)(2 \times 2 + 2) = (1 - 1) \times (4 + 2) = 0 \times 6 = 0$

Ex 56: Solve for x:

$$x(x-1)(x-2) = 0$$

Give your answers in increasing order:

The set of solutions is $\{0, 1, 2\}$.

Answer:

$$x(x-1)(x-2) = 0$$

 $x = 0$ or $x - 1 = 0$ or $x - 2 = 0$ (null factor law)
 $x = 0$ or $x = 1$ or $x = 2$

The set of solutions is 60, 1, 2

Verification:

- For x = 0: $0 \times (0 1) \times (0 2) = 0 \times (-1) \times (-2) = 0$
- For x = 1: $1 \times (1 1) \times (1 2) = 1 \times 0 \times (-1) = 0$
- For x = 2: $2 \times (2 1) \times (2 2) = 2 \times 1 \times 0 = 0$

G SOLVING QUADRATIC EQUATIONS IN THE FORM $x^2=k$

G.1 SOLVING QUADRATIC EQUATIONS IN THE FORM $x^2=k$

Ex 57: Solve for x:

$$x^2 = 9$$

Give your answers in increasing order:

The set of solutions is $\{ \boxed{-3}, \boxed{3} \}$.

Answer: We are given $x^2 = 9$.

• Applying the proposition : The solutions of this equation $x^2 = 9$ are

$$\{-\sqrt{9}, \sqrt{9}\} = \{-3, 3\}$$

• Formal resolution : To solve for x:

$$x^{2} = 9$$

$$x^{2} - 9 = 0$$

$$x^{2} - 3^{2} = 0$$

$$(x - 3)(x + 3) = 0 \quad \text{(difference of squares)}$$

$$x - 3 = 0 \quad \text{or} \quad x + 3 = 0$$

$$x = 3 \quad \text{or} \quad x = -3$$

The set of solutions is [-3, 3]

Verification:

- For x = -3: $(-3)^2 = 9$
- For x = 3: $(3)^2 = 9$

Ex 58: Solve for x:

$$x^2 = 25$$

Give your answers in increasing order:

The set of solutions is $\{-5, 5\}$.

Answer: We are given $x^2 = 25$.

• Applying the proposition : The solutions of this equation $x^2 = 25$ are

$$\{-\sqrt{25}, \sqrt{25}\} = \{-5, 5\}$$

• **Formal resolution** : To solve for *x*:

$$x^{2} = 25$$

$$x^{2} - 25 = 0$$

$$x^{2} - 5^{2} = 0$$

$$(x - 5)(x + 5) = 0 \quad \text{(difference of squares)}$$

$$x - 5 = 0 \quad \text{or} \quad x + 5 = 0$$

$$x = 5 \quad \text{or} \quad x = -5$$

The set of solutions is [-5, 5]

Verification:

- For x = -5: $(-5)^2 = 25$
- For x = 5: $(5)^2 = 25$

Ex 59: Solve for x:

$$x^2 = 10$$

Give your answers in increasing order:

The set of solutions is $\{ \boxed{-\sqrt{10}}, \boxed{\sqrt{10}} \}$.

Answer: We are given $x^2 = 10$.

• Applying the proposition : The solutions of this equation $x^2 = 10$ are

$$\left\{-\sqrt{10}, \sqrt{10}\right\}$$

• Formal resolution : To solve for x:

$$x^{2} = 10$$

$$x^{2} - 10 = 0$$

$$x^{2} - (\sqrt{10})^{2} = 0$$

$$(x - \sqrt{10})(x + \sqrt{10}) = 0 \quad \text{(difference of squares)}$$

$$x - \sqrt{10} = 0 \quad \text{or} \quad x + \sqrt{10} = 0$$

$$x = \sqrt{10} \quad \text{or} \quad x = -\sqrt{10}$$

The set of solutions is $\left\{-\sqrt{10}, \sqrt{10}\right\}$.

Verification:

- For $x = -\sqrt{10}$: $(-\sqrt{10})^2 = 10$
- For $x = \sqrt{10}$: $(\sqrt{10})^2 = 10$

Ex 60: Solve for x:

$$r^2 - 3 = 0$$

Give your answers in increasing order:

The set of solutions is $\{ \lfloor -\sqrt{3} \rfloor, \lfloor \sqrt{3} \rfloor \}$.

Answer: We are given $x^2 - 3 = 0$.

• Applying the proposition: The solutions of this equation

$$x^2 = 3$$
 are $\left\{-\sqrt{3}, \sqrt{3}\right\}$

• Formal resolution : To solve for x:

$$x^2 - 3 = 0$$

$$x^2 - (\sqrt{3})^2 = 0$$

$$(x - \sqrt{3})(x + \sqrt{3}) = 0$$
 (difference of squares)
$$x - \sqrt{3} = 0 \quad \text{or} \quad x + \sqrt{3} = 0$$

$$x = \sqrt{3} \quad \text{or} \quad x = -\sqrt{3}$$

The set of solutions is $\left[\left\{ -\sqrt{3}, \sqrt{3} \right\} \right]$.

Verification:

• For
$$x = -\sqrt{3}$$
: $(-\sqrt{3})^2 - 3 = 3 - 3 = 0$

• For
$$x = \sqrt{3}$$
: $(\sqrt{3})^2 - 3 = 3 - 3 = 0$