SOLVING QUADRATIC EQUATIONS

A DEFINITION

A.1 IDENTIFYING COEFFICIENTS OF QUADRATIC EQUATIONS: LEVEL 1

Ex 1: For the equation $5x^2 - 2x - 3 = 0$, find the coefficients in the form $ax^2 + bx + c = 0$:

Ex 2: For the equation $x^2 + 2x + 1 = 0$, find the coefficients in the form $ax^2 + bx + c = 0$:

$$a = \boxed{}$$
, $b = \boxed{}$ and $c = \boxed{}$

Ex 3: For the equation $-x^2 + 2 = 0$, find the coefficients in the form $ax^2 + bx + c = 0$:

$$a =$$
 and $c =$

Ex 4: For the equation $-x^2 + 2x = 0$, find the coefficients in the form $ax^2 + bx + c = 0$:

$$a =$$
 and $c =$

A.2 IDENTIFYING COEFFICIENTS OF QUADRATIC EQUATIONS: LEVEL 2

Ex 5: For the equation $x^2 - x + 3 = 1$, find the coefficients in the form $ax^2 + bx + c = 0$:

$$a = \boxed{\quad \ \ }, b = \boxed{\quad \ \ }$$
 and $c = \boxed{\quad \ }$

Ex 6: For the equation $(x+1)^2 = 0$, find the coefficients in the form $ax^2 + bx + c = 0$:

$$a = \boxed{}$$
, $b = \boxed{}$ and $c = \boxed{}$

Ex 7: For the equation $(x-2)^2 + 2 = 0$, find the coefficients in the form $ax^2 + bx + c = 0$:

$$a =$$
 and $c =$

Ex 8: For the equation x(x-2) = 0, find the coefficients in the form $ax^2 + bx + c = 0$:

$$a =$$
 and $c =$

Ex 9: For the equation (x-2)(x+1)=0, find the coefficients in the form $ax^2+bx+c=0$:

$$a =$$
 and $c =$

A.3 RECOGNIZING QUADRATIC EQUATIONS

MCQ 10: Is the equation $2x^2-3x+2=0$ a quadratic equation?

- \square Yes.
- \square No.

MCQ 11: Is the equation 2x - 3 = 0 a quadratic equation?

- \square Yes.
- □ No.

MCQ 12: Is the equation $2x^2 - 3x + \frac{1}{x} = 0$ a quadratic equation?

- \square Yes.
- □ No.

MCQ 13: Is the equation (x-1)(x+2) = 0 a quadratic equation?

- \square Yes.
- \square No.

A.4 VERIFYING ROOTS OF QUADRATIC EQUATIONS

MCQ 14: Is 1 a root of the equation $x^2 - 2x + 1 = 0$?

- \square Yes.
- \square No.

MCQ 15: Is 1 a root of the equation $x^2 + 2x + 1 = 0$?

- \square Yes.
- \square No.

MCQ 16: Is 2 a root of the equation (x-1)(x-2) = 0?

- \square Yes.
- \square No.

MCQ 17: Is 5 a root of the equation $(x-2)^2 - 8 = 0$?

- \square Yes.
- \square No.

B SOLVING BY FACTORIZATION

B.1 FINDING SOLUTION SETS OF FACTORED QUADRATIC EQUATIONS

MCQ 18: For the equation (x-1)(x+2) = 0, the set of solutions is

- $\Box S = \{-2, 1\}$
- $\Box S = \{-1, 2\}$
- $\square S = \{2\}$

	S	=	{1	.}
--	---	---	----	----

MCQ 19: For the equation $x(x-\sqrt{2})=0$, the set of solutions

- $\Box S = \{0, -\sqrt{2}\}\$
- $\square S = \{-\sqrt{2}\}\$
- $\square S = \{0\}$
- $\square S = \{0, \sqrt{2}\}\$

MCQ 20: For the equation $(x-1)^2 = 0$, the set of solutions is

- $\square S = \{1\}$
- $\square S = \{-1\}$
- $\Box S = \{1, -1\}$
- $\square S = \{0\}$

solutions is

- $\Box S = \{-1, 2\}$
- $\Box S = \{\frac{1}{2}, -1\}$
- $\square S = \{2\}$
- \square $S = \{-1\}$

B.2 SOLVING FACTORED QUADRATIC EQUATIONS

Ex 22: Solve the equation (x-1)(x+2) = 0. Justify your

Ex 23: Solve the equation (x+1)(x-1)=0. Justify your

Ex 24: Solve the equation ((x-2)+3)((x-2)-3)=0. Justify

Ex 25: Solve the equation $(x + \sqrt{2})(x - \sqrt{2}) = 0$. Justify your

FOR FACTORIZATION **TECHNIQUES** SPECIAL FORMS OF EQUATIONS

FINDING SOLUTION SETS OF QUADRATIC **EQUATIONS IN THE FORM** $ax^2 + bx$

MCQ 21: For the equation (2x-1)(x+1)=0, the set of MCQ 26: For the equation $x^2+x=0$, the set of solutions is

- $\Box S = \{-1, 0, 1\}$
- $\square S = \{1\}$
- $\square S = \{0\}$
- $\Box S = \{0, -1\}$

MCQ 27: For the equation $x^2 - 2x = 0$, the set of solutions is

- $\Box S = \{-2, 0\}$
- $\square S = \{2\}$
- $\square S = \{0\}$
- $\Box S = \{0, 2\}$

MCQ 28: For the equation $2x^2 + x = 0$, the set of solutions is

- $\square S = \left\{ -\frac{1}{2}, 0 \right\}$
- $\Box S = \{-2, 0\}$
- $\Box S = \{2, 0\}$
- $\Box S = \{0, 1\}$

MCQ 29: For the equation $3x^2 = x$, the set of solutions is

- $\Box S = \{-3, 0\}$
- $\square S = \left\{0, \ \frac{1}{3}\right\}$
- $\Box S = \{0, 3\}$
- $\Box S = \{0, 1\}$

C.2 SOLVING QUADRATIC EQUATIONS IN THE FORM ax^2+bx

Ex 30: Solve the equation $x^2 + x = 0$. Justify your answer.

- $\square S = \{-2, 2\}$
- $\square S = \{2\}$
- $\square S = \{\}$
- $\square \ S = \{-\sqrt{2}, \sqrt{2}\}$

MCQ 36: For the equation $x^2 - 2 = 0$, the set of solutions is

- $\square S = \left\{ -\sqrt{2}, \sqrt{2} \right\}$
- $\Box S = \{-2, 2\}$
- $\square S = \{2\}$

Ex 31: Solve the equation $x^2 - 2x = 0$. Justify your answer.

 $\Box S = \{-1, 1\}$

MCQ 37: For the equation $(x-1)^2 - 9 = 0$, the set of solutions is

- $\Box S = \{-2, 4\}$
- $\Box S = \{-3, 3\}$
- $\Box S = \{2, 4\}$

Ex 32: Solve the equation $2x^2 - x = 0$. Justify your answer. $\square S = \{-1, 1\}$

MCQ 38: For the equation $(x-1)^2 - 2 = 0$, the set of solutions is

- $\square S = \{1 \sqrt{2}, 1 + \sqrt{2}\}$
- $\Box S = \{-2, 4\}$
- $\square \ S = \left\{ -\sqrt{2}, \sqrt{2} \right\}$
- $\Box S = \{-1, 1\}$

Ex 33: Solve the equation $2x^2 = 4x$. Justify your answer.

C.4 SOLVING QUADRATIC EQUATIONS IN THE FORM OF A DIFFERENCE OF SQUARES

Ex 39: Solve the equation $x^2 - 4 = 0$. Justify your answer.

C.3 FINDING SOLUTION SETS OF QUADRATIC EQUATIONS IN THE FORM OF A DIFFERENCE OF SQUARES

MCQ 34: For the equation $x^2 - 4 = 0$, the set of solutions is

- $\Box S = \{-4, 4\}$
- $\square S = \{2\}$
- $\Box S = \{-1, 1\}$
- $\Box S = \{-2, 2\}$

MCQ 35: For the equation $x^2 = -2$, the set of solutions is

Ex 40: Solve the equation $x^2 = -2$. Justify your answer.

Ex 41: Solve the equation $x^2 - 2 = 0$. Justify your answer. $\Box S = \{-1, 3\}$ $\Box S = \{-1, 1\}$ MCQ 45: For the equation $x^2 + 6x + 5 = 0$, the set of solutions $\Box S = \{-5, -1\}$ $\Box S = \{-5, 1\}$ $\Box S = \{-1, 5\}$ $\Box S = \{1, 5\}$ MCQ 46: For the equation $x^2 + 10x + 24 = 0$, the set of solutions is $\Box S = \{2, 4\}$ $\Box S = \{2, 6\}$ **Ex 42:** Solve the equation $(x-1)^2 - 9 = 0$. Justify your answer. $\Box S = \{4, 6\}$ $\Box S = \{-4, -6\}$ MCQ 47: For the equation $x^2 - 2x - 1 = 0$, the set of solutions $\Box S = \{1 - \sqrt{2}, 1 + \sqrt{2}\}\$ $\Box S = \{-1, 2\}$ $\Box S = \{-1, 1\}$ $\Box S = \{0, 2\}$ **Ex 43:** Solve the equation $(x-1)^2-2=0$. Justify your answer. **D.2 SOLVING QUADRATIC EQUATIONS Ex 48:** Solve the equation $x^2 + 2x - 3 = 0$. Justify your answer. **Ex 49:** Solve the equation $x^2 + 6x + 5 = 0$. Justify your answer.

D FACTORIZATION BY COMPLETING THE SQUARE

D.1 FINDING SOLUTION SETS OF QUADRATIC EQUATIONS

MCQ 44: For the equation $x^2 + 2x - 3 = 0$, the set of solutions is

$$\Box S = \{-3, 1\}$$

$$\Box S = \{3, 1\}$$

answer.	\square As $\Delta > 0$, there are 2 distinct roots.
	equation. \square As $\Delta > 0$, there is 1 single root.
	\square As $\Delta > 0$, there are no roots.
	3. The solutions of the equation are and (order from lowest to highest).
	Ex 57: Consider the quadratic equation $x^2 - 2x - 1 = 0$. 1. Find the discriminant.
	1. Find the discriminant.
Ex 51: Solve the equation $x^2 - 2x - 1 = 0$. Justify your answer.	$\Delta = $
	2. Hence, state the nature of the roots of the \square As $\Delta > 0$, there are 2 distinct roots. equation. \square As $\Delta > 0$, there is 1 single root. \square As $\Delta > 0$, there are no roots.
	3. The solutions of the equation are and and (order from lowest to highest).
	Ex 58: Consider the quadratic equation $2x^2 - 3x + 1 = 0$.
E QUADRATIC FORMULA	1. Find the discriminant.
	$\Delta = $
E.1 CALCULATING THE DISCRIMINANT	
Ex 52: For the equation $5x^2-2x-3=0$, calculate the discriminant: $\Delta = \boxed{\hspace{1cm}}$	2. Hence, state the nature of the roots of the \square As $\Delta > 0$, there are 2 distinct roots. equation. \square As $\Delta > 0$, there is 1 single root. \square As $\Delta > 0$, there are no roots.
Ex 53: For the equation $x^2+6x+5=0$, calculate the discriminant: $\Delta = \boxed{\hspace{1cm}}$	3. The solutions of the equation are and (order from lowest to highest).
	Ex 59: Consider the quadratic equation $2x^2 - 4x + 2 = 0$.
Ex 54: For the equation $2x^2 - x + 3 = 0$, calculate the discriminant:	1. Find the discriminant.
$\Delta = \boxed{\hspace{1cm}}$	$\Delta = igcap$
Ex 55: For the equation $-2x^2+8=0$, calculate the discriminant: $\Delta = \boxed{\hspace{2cm}}$	2. Hence, state the nature of the roots of the \square As $\Delta=0$, there are 2 distinct roots. equation. \square As $\Delta=0$, there are no real roots.
E.2 SOLVING QUADRATIC EQUATIONS: STEP BY STEP	\square As $\Delta=0$, there is 1 double root.
Ex 56: Consider the quadratic equation $x^2 + 2x - 3 = 0$.	3. The solution of the equation is
1. Find the discriminant.	E.3 SOLVING QUADRATIC EQUATIONS
$\Delta = igcap $	Ex 60: Solve the quadratic equation $x^2 + 2x - 3 = 0$.

5

state the nature of the roots of the

Ex 50: Solve the equation $x^2 + 10x + 24 = 0$. Justify your 2. Hence,

www.commeunjeu.com

Ex 61: Solve the quadratic equation $x^2 + 2x - 2 = 0$.	E.4 SOLVING QUADRATIC EQUATIONS
Ex 62: Solve the quadratic equation $x^2 - 2x + 6 = 0$.	Ex 64: Solve the quadratic equation $2x^2 - 5x + 2 = 0$.
2x + 0 = 0.	Ex 65: Solve the quadratic equation $x^2 + 2x - 2 = 0$.

Ex 63: Solve the quadratic equation $x^2 - 6x + 9 = 0$.

Ex 66: Solve the quadratic equation $x^2 - 8x + 15 = 0$.

Ex 67: Solve the quadratic equation $x^2 + 6x + 5 = 0$	