# **SOLVING QUADRATIC EQUATIONS**

The purpose of this section is to learn how to solve quadratic equations.

### **A DEFINITION**

#### Definition Quadratic Equation —

Given numbers a, b, and c with  $a \neq 0$ , a quadratic equation is any equation of the form

$$ax^2 + bx + c = 0.$$

Ex: Is  $3x^2 + 5x + 4$  a quadratic polynomial? If yes, identify the coefficients a, b, and c.

Answer: Yes: a = 3, b = 5, c = 4.

#### Definition Root —

A **root** of the equation  $ax^2 + bx + c = 0$  is any number that, when substituted for x, makes the equation true.

Ex: Are 1 and 3 roots of the equation  $x^2 - 3x + 2 = 0$ ?

Answer: To check if 1 and 3 are roots, substitute each into the equation:

- For x = 1,  $1^2 3 \cdot 1 + 2 = 1 3 + 2 = 0$ . So 1 is a root.
- For x = 3,  $3^2 3 \cdot 3 + 2 = 9 9 + 2 = 2 \neq 0$ . So 3 is not a root

A quadratic equation may have no real solution. For example,  $x^2 = -1$  has no real solution because the square of a real number cannot be negative.

#### **B SOLVING BY FACTORIZATION**

To solve a quadratic equation of the form  $ax^2 + bx + c = 0$  with  $a \neq 0$ , we can leverage our understanding of solving linear equations. The key idea is to transform the quadratic equation into a product of linear factors using **factorization**. This allows us to convert the problem into solving simpler linear equations, which we already know how to handle.

## Proposition Null Factor Law .

If ab = 0, then a = 0 or b = 0.

**Ex:** Solve (x-1)(x+2) = 0.

Answer:

$$(x-1)(x+2) = 0$$
  
 $x-1=0$  or  $x+2=0$  (null factor law)  
 $x=1$  or  $x=-2$  (solve each equation)

### Method Solving by Factorization -

To solve a quadratic equation:

- 1. Factorize,
- 2. Apply the null factor law,
- 3. Solve the resulting linear equations.

This turns the problem of solving a quadratic equation into finding a factorization.

#### C FACTORIZATION TECHNIQUES FOR SPECIAL FORMS OF EQUATIONS

Proposition Common Factor Law for equations of the form  $x^2 + ax$ 

$$x^2 + ax = x(x+a)$$

**Ex:** Find the roots of  $x^2 - 2x = 0$ .

Answer:

$$x^2 - 2x = 0$$
  
 $x(x-2) = 0$  (factorizing)  
 $x = 0$  or  $x - 2 = 0$  (null factor law)  
 $x = 0$  or  $x = 2$  (solving linear equations)

Proposition Perfect Square for equations of the form  $x^2 + 2ax + a^2$ 

$$x^2 + 2ax + a^2 = (x+a)^2$$

**Ex:** Solve  $x^2 + 2x + 1 = 0$ .

Answer:

$$x^{2} + 2x + 1 = 0$$
  
 $(x+1)^{2} = 0$  (perfect square)  
 $x+1 = 0$  (null factor law)  
 $x = -1$  (solving linear equation)

So, -1 is a double root.

Proposition Difference of Squares for equations of the form  $x^2 - a^2$ 

$$x^2 - a^2 = (x - a)(x + a)$$

**Ex:** Solve  $x^2 - 9 = 0$ .

Answer:

$$x^2 - 9 = 0$$
 (difference of squares)  $x - 3 = 0$  or  $x + 3 = 0$  (null factor law)  $x = 3$  or  $x = -3$  (solving linear equations)

# D FACTORIZATION BY COMPLETING THE SQUARE

Some quadratics like  $x^2 + 2x - 3$  cannot be factored easily. In this case, we use **completing the square**.

Proposition Completing the Square -

$$x^{2} + bx + c = \left(x + \frac{b}{2}\right)^{2} + c - \left(\frac{b}{2}\right)^{2}.$$

Proof

$$\left(x + \frac{b}{2}\right)^2 = x^2 + bx + \left(\frac{b}{2}\right)^2 \qquad \text{(perfect square)}$$

$$\left(x + \frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 + c = x^2 + bx + \left(\frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 + c \qquad \text{(adding } -\left(\frac{b}{2}\right)^2 + c \text{ to both sides)}$$

$$\left(x + \frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 + c = x^2 + bx + c \qquad \text{(simplifying)}.$$

Ex: Complete the square for  $x^2 + 10x + 24 = 0$ .

Answer: We know that  $(x + 5)^2 = x^2 + 10x + 25$ . So

$$x^{2} + 10x + 24 = 0$$
  
 $x^{2} + 10x + 25 - 1 = 0$  (rewrite 24 as 25 - 1)  
 $(x+5)^{2} - 1 = 0$  (complete the square).

Method General method to solve quadratic equations

- Step 1: Complete the square
- Step 2: Use the difference of squares

- Step 3: Apply the null factor law
- Step 4: Solve the linear equations

**Ex:** Solve  $x^2 + 10x + 24 = 0$ .

Answer: We know that  $(x + 5)^2 = x^2 + 10x + 25$ . So

$$x^{2} + 10x + 24 = 0$$
  
 $x^{2} + 10x + 25 - 1 = 0$  (rewrite 24 as  $25 - 1$ )  
 $(x + 5)^{2} - 1 = 0$  (complete the square)  
 $(x + 5)^{2} - 1^{2} = 0$  (difference of squares)  
 $(x + 5 - 1)(x + 5 + 1) = 0$  (factorize)  
 $(x + 4)(x + 6) = 0$  (simplify)  
 $x + 4 = 0$  or  $x + 6 = 0$  (null factor law)  
 $x = -4$  or  $x = -6$  (solve).

## **E QUADRATIC FORMULA**

#### Definition **Discriminant**

Given a quadratic equation  $ax^2 + bx + c = 0$ , the discriminant, denoted  $\Delta$ , is defined as

$$\Delta = b^2 - 4ac.$$

#### Proposition Quadratic formula

For any quadratic equation  $ax^2 + bx + c = 0$ :

• If  $\Delta > 0$ , there are two real roots:

$$x = \frac{-b - \sqrt{\Delta}}{2a}$$
 or  $x = \frac{-b + \sqrt{\Delta}}{2a}$ 

• If  $\Delta = 0$ , there is one real root:

$$x = \frac{-b}{2a}.$$

• If  $\Delta < 0$ , there are no real roots.

### Proof

Suppose  $ax^2 + bx + c = 0$ , where  $a \neq 0$ .

$$ax^{2} + bx + c = 0$$

$$\therefore x^{2} + \frac{b}{a}x + \frac{c}{a} = 0 \quad \text{(divide each term by } a, \text{ since } a \neq 0\text{)}$$

$$\therefore x^{2} + \frac{b}{a}x + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2} + \frac{c}{a} = 0 \quad \text{(complete the square)}$$

$$\therefore \left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a^{2}} = 0 \quad \text{(simplify)}$$

$$\therefore \left(x + \frac{b}{2a}\right)^{2} - \frac{\Delta}{4a^{2}} = 0 \quad \text{(where } \Delta = b^{2} - 4ac\text{)}.$$

Now, consider the cases based on the discriminant  $\Delta$ :

• Case  $\Delta \geq 0$ : Since  $\frac{\Delta}{4a^2} \geq 0$ , a real square root exists.

$$\left(x + \frac{b}{2a}\right)^2 - \left(\sqrt{\frac{\Delta}{4a^2}}\right)^2 = 0$$

$$\therefore \left(x + \frac{b}{2a} - \sqrt{\frac{\Delta}{4a^2}}\right) \left(x + \frac{b}{2a} + \sqrt{\frac{\Delta}{4a^2}}\right) = 0 \quad \text{(difference of squares)}.$$

Applying the null factor law:

$$x + \frac{b}{2a} - \sqrt{\frac{\Delta}{4a^2}} = 0$$
 or  $x + \frac{b}{2a} + \sqrt{\frac{\Delta}{4a^2}} = 0$ .

Solving these linear equations:

$$x = -\frac{b}{2a} + \sqrt{\frac{\Delta}{4a^2}}$$
 or  $x = -\frac{b}{2a} - \sqrt{\frac{\Delta}{4a^2}}$ .

Simplifying:

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}.$$

- If  $\Delta > 0$ , there are two distinct real roots.
- If  $\Delta = 0$ , there is one real root (double root):  $x = -\frac{b}{2a}$ .
- Case  $\Delta < 0$ : Then  $\frac{\Delta}{4a^2} < 0$ , so

$$\left(x + \frac{b}{2a}\right)^2 = \frac{\Delta}{4a^2} < 0.$$

Since the square of a real number is non-negative, there are no real solutions.

Ex: Consider the quadratic equation  $x^2 + 2x - 3 = 0$ .

- 1. Find the discriminant.
- 2. Hence, state the nature of the roots of the equation.
- 3. Solve the equation.

Answer: 
$$x^2 + 2x - 3 = 0$$
 has  $a = 1, b = 2, c = -3$ .

1. 
$$\Delta = b^2 - 4ac$$
  
=  $(2)^2 - 4(1)(-3)$   
=  $4 + 12$   
=  $16$ 

2. As  $\Delta > 0$ , there are 2 distinct roots.

3. 
$$x = \frac{-b - \sqrt{\Delta}}{2a} \quad \text{or } x = \frac{-b + \sqrt{\Delta}}{2a}$$
$$x = \frac{-2 - \sqrt{16}}{2 \cdot 1} \quad \text{or } x = \frac{-2 + \sqrt{16}}{2 \cdot 1}$$
$$x = \frac{-2 - 4}{2} \quad \text{or } x = \frac{-2 + 4}{2}$$
$$x = -3 \quad \text{or } x = 1$$