A DEFINITION

A.1 CALCULATING SQUARE ROOTS OF PERFECT SQUARES

Ex 1: Calculate:

$$\sqrt{4} =$$

Ex 2: Without using a calculator, calculate:

$$\sqrt{36} =$$

Ex 3: Calculate:

$$\sqrt{64} =$$

Ex 4: Calculate:

$$\sqrt{49} =$$

Ex 5: Calculate:

$$\sqrt{100} =$$

Ex 6: Calculate:

$$\sqrt{81} =$$

Ex 7: Calculate:

$$\sqrt{0} =$$

A.2 CALCULATING SQUARE ROOTS OF FRACTIONS

Ex 8: Write in fraction form:

$$\sqrt{\frac{1}{4}} =$$

Ex 9: Write in fraction form:

$$\sqrt{\frac{1}{25}} =$$

Ex 10: Write in fraction form:

$$\sqrt{\frac{1}{9}} =$$

Ex 11: Write in fraction form:

$$\sqrt{\frac{1}{16}} = \boxed{}$$

Ex 12: Write in fraction form:

$$\sqrt{\frac{9}{16}} =$$

Ex 13: Write in fraction form:

$$\sqrt{\frac{4}{9}} =$$

B CALCULATING SQUARE ROOTS

B.1 USING A CALCULATOR

Ex 14: Using a calculator, evaluate $\sqrt{2}$ (round to 2 decimal places).

$$\sqrt{2} \approx$$

Ex 15: Using a calculator, evaluate $\sqrt{10}$ (round to 2 decimal places).

$$\sqrt{10} \approx$$

Ex 16: Using a calculator, evaluate $\sqrt{50}$ (round to 2 decimal places).

$$\sqrt{50} \approx$$

Ex 17: Using a calculator, evaluate $\sqrt{0.5}$ (round to 2 decimal places).

$$\sqrt{0.5} \approx$$

B.2 FINDING THE SIDE LENGTH OF A SQUARE

Ex 18: The area of a square is 2 m^2 . What is the length of the side of the square, s?

 $s \approx$ _____ m (round your answer to 2 decimal places)

Ex 19: The area of a square is 10 m^2 . What is the length of the side of the square, s?

 $s \approx$ m (round your answer to 2 decimal places)