TRANSFORMATIONS

A TYPES OF TRANSFORMATIONS

Transformations are ways to move, flip, or turn a shape.

Definition Object and Image -

When a transformation is applied to a shape, the input shape is called the **object**. The output shape after the transformation is called the **image**.

Definition Types of Transformations -

There are several types of transformations, including:

• Translation: Slides the shape to a new position without changing its shape, size, or the direction it faces.

• Reflection: Flips the shape over a line (like a mirror), creating a mirror image.

• Rotation: Turns the shape around a point by a certain angle.

• Homothety: Enlarges or reduces the shape by a scale factor from a center point, keeping the shape similar.

B TRANSLATION

A **translation** moves a figure from one place to another. Every point on the figure moves the same distance in the same direction.

Definition Translation -

A translation by the vector \overrightarrow{v} maps a point M to its image M' such that $\overrightarrow{MM'} = \overrightarrow{v}$.

Proposition Coordinates of the Image Point

In a coordinate system, if the point M has coordinates (x, y) and the translation vector is $\overrightarrow{v} = \begin{pmatrix} a \\ b \end{pmatrix}$, then the image point M' has coordinates (x + a, y + b).

C HOMOTHETY

Definition **Homothety** -

A homothety with center A and scale factor k maps a point M to the point M' such that M' is obtained by translating the point A by the vector $k\overrightarrow{AM}$.

Proposition Coordinates of the Image Point

In a coordinate system, if the center A has coordinates (a,b), the point M has coordinates (x,y), and the scale factor is k, then the image point M' has coordinates $(a+k(x-a),\ b+k(y-b))$.

D SPECIFIC REFLECTIONS

Proposition Reflection over the x-axis

The image of the point M(x, y) under the reflection over the x-axis is M'(x, -y).

Proposition Reflection over the y-axis

The image of the point M(x,y) under the reflection over the y-axis is M'(-x,y).

Proposition Reflection over the line y = x

The image of the point M(x,y) under the reflection $M_{y=x}$ over the line y=x is M'(y,x).

E SPECIFIC ROTATIONS

Proposition Rotation of 90°

The image of the point M(x,y) under the rotation of 90° (counterclockwise) around the origin is M'(-y,x).

Proposition Rotation of -90 $^{\circ}$

The image of the point M(x,y) under the rotation of -90° (clockwise) around the origin is M'(y,-x).

Proposition Rotation of 180°

The image of the point M(x,y) under the rotation of 180° around the origin is M'(-x,-y).

