## **TRIGONOMETRY**

• The measure of an angle is the fraction of a complete turn. We have seen previously that a full revolution makes an angle of 360°.



Although a full revolution could just as well be  $100^{\circ}$ , or  $120^{\circ}$ , or some other number of degrees. This makes degrees a rather artificial measure of angles.

• An angle can be equal to the length of the arc formed by an angle with the circle of radius 1.



## A RADIAN MEASURE

Definition Radian Measure

The radian measure,  $\theta$ , of an angle is defined as the length of the arc subtended between the two rays of the angle on a circle of radius 1.



The radian unit is often omitted with 1 rad = 1.

Proposition Angle of Complete Turn

The radian measure of the revolution angle is  $2\pi$ .



Ex: Find the angle of the straight angle -



Answer: The straight angle is half the revolution angle. So the angle is  $\frac{2\pi}{2} = \pi$ .

#### Proposition Proportionality of Radians and Degrees

Radians and degrees are in proportion.

## Method Converting Between Degrees and Radians

- $\bullet$  To convert from degrees to radians, multiply degrees by  $\frac{\pi}{180}$
- $\bullet$  To convert from radians to degrees, multiply radians by  $\frac{180}{\pi}$

**Ex:** Convert  $60^{\circ}$  to radians.

Answer: 
$$60^{\circ} = 60^{\circ} \times \frac{\pi}{180^{\circ}}$$
$$= \frac{\pi}{3}$$

## Definition Positive and Negative Angles -

- A positive angle measure represents a counterclockwise rotation.
- A negative angle measure represents a clockwise rotation.



**Ex:** Draw the angle  $\frac{3\pi}{2}$  and  $-\frac{\pi}{2}$ 

Answer:



## Proposition Reference Angles on the Unit Circle



## **B TRIGONOMETRIC RATIOS AND UNIT CIRCLE**

Definition Unit circle -

The unit circle is a circle with a radius of 1 centered at the origin.



## Proposition Relation between Angle and Coordinates

For M(x,y) the point on the unit circle at the angle  $\theta$ , then

- $\cos \theta$  is the x-coordinate of M:  $\cos \theta = x$
- $\sin \theta$  is the y-coordinate of M:  $\sin \theta = y$



**Ex:** Find the values  $\cos\left(\frac{\pi}{2}\right)$  and  $\sin\left(\frac{\pi}{2}\right)$ .

Answer: On the unit circle, the point corresponding to the angle  $\frac{\pi}{2}$  has coordinates (0,1):



 $\cos\left(\frac{\pi}{2}\right) = 0$  x-coordinate  $\sin\left(\frac{\pi}{2}\right) = 1$  y-coordinate

Proposition Sign of of Sine and Cosine



| Quadrant | $\cos \theta$ | $\sin \theta$ |
|----------|---------------|---------------|
| 1        | +             | +             |
| 2        |               | +             |
| 3        | _             | _             |
| 4        | +             | 1             |

## C TRIGONOMETRIC PROPERTIES

Proposition Pythagorean Relation -

$$\cos^2\theta + \sin^2\theta = 1$$

Proposition Maximum and Minimum of Trigonometric Ratios -

$$-1 \leqslant \cos \theta \leqslant 1$$
 and  $-1 \leqslant \sin \theta \leqslant 1$ 

Proposition Periodicity of Trigonometric Ratios -

$$cos(\theta + 2k\pi) = cos \theta$$
 and  $sin(\theta + 2k\pi) = sin \theta$ 

where k is any integer.

## Proposition Add $\pi$ to Trigonometric Ratios

$$\sin(\pi + \theta) = -\sin\theta$$
$$\cos(\pi + \theta) = -\cos\theta$$



Proposition Opposite of Trigonometric Ratios  $\sin(-\theta) = -\sin\theta$ 

$$\cos(-\theta) = \cos \theta$$

$$y$$

$$\sin \theta$$

$$\cos(-\theta)$$

$$\sin(-\theta)$$

$$\sin(-\theta)$$

$$M'$$







# D MULTIPLES OF $\frac{\pi}{4}$

Proposition Coordinates of Angle  $\frac{\pi}{4}$ 

$$\cos\frac{\pi}{4} = \frac{1}{\sqrt{2}} \quad \text{and} \quad \sin\frac{\pi}{4} = \frac{1}{\sqrt{2}}$$



Proposition Multiples of  $\frac{\pi}{4}$ 



The signs of the coordinates are determined by the quadrant in which the angle lies.

**Ex:** Find  $\cos \frac{3\pi}{4}$ 

Answer:  $\cos \frac{3\pi}{4} = -\frac{1}{\sqrt{2}}$ 

## E MULTIPLES OF $\frac{\pi}{6}$

Proposition Coordinates of Angle  $\frac{\pi}{3}$ 

$$\cos\frac{\pi}{3} = \frac{1}{2} \quad \text{and} \quad \sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$$

$$\sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$$

$$\cos\frac{\pi}{3} = \frac{1}{2}$$

Proposition Multiples of  $\frac{\pi}{6}$ 



**Ex:** Find  $\cos \frac{2\pi}{3}$  and  $\sin \frac{2\pi}{3}$ 

Answer:



7

 $\cos \frac{2\pi}{3} = -\frac{1}{2} \text{ and } \sin \frac{2\pi}{3} = \frac{\sqrt{3}}{2}$