TRIGONOMETRY

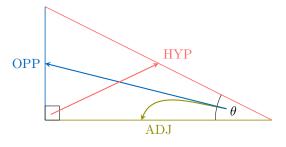
Trigonometry is a branch of mathematics that explores the relationships between the side lengths and angles of triangles, particularly right-angled triangles. It has wide applications in fields such as science, engineering, astronomy, and video game development. The foundation of trigonometry rests on three primary ratios: sine, cosine, and tangent.

A RIGHT-ANGLED TRIANGLE

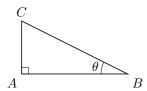
Definition Right-Angled Triangle.

A right-angled triangle is a triangle with one angle equal to 90°. For a given angle θ (other than the right angle), we define:

- Hypotenuse (HYP): The longest side, opposite the right angle.
- Adjacent Side (ADJ): The side adjacent to the angle θ , forming one side of the angle.
- Opposite Side (OPP): The side opposite the angle θ .



Ex: In the triangle below, identify the hypotenuse, the adjacent side, and the opposite side relative to the angle θ .



Answer:

• Hypotenuse: \overline{BC}

• Adjacent side: \overline{AC}

• Opposite side: \overline{AB}

B TRIGONOMETRIC FUNCTIONS

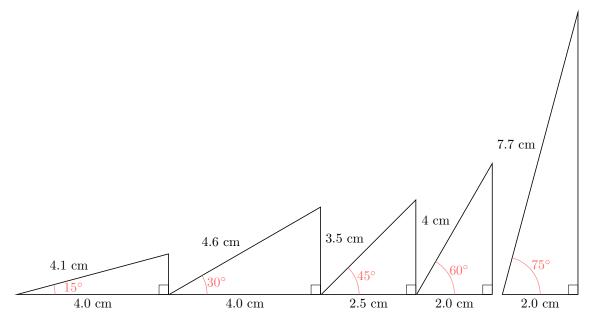
Discover:

- 1. Using a protractor and ruler, draw right-angled triangles with angles θ of 15°, 30°, 45°, 60°, and 75°. Measure the lengths of the hypotenuse and the adjacent side to the nearest millimeter.
- 2. Complete the following table with the ratio $\frac{ADJ}{HYP}$ for each angle:

θ	15°	30°	45°	60°	75°
ADJ					
$\overline{\text{HYP}}$					

Answer:

1. Examples of right-angled triangles with the specified angles:



2. The ratio $\frac{\mathrm{ADJ}}{\mathrm{HYP}}$ should yield consistent values for each angle, approximately:

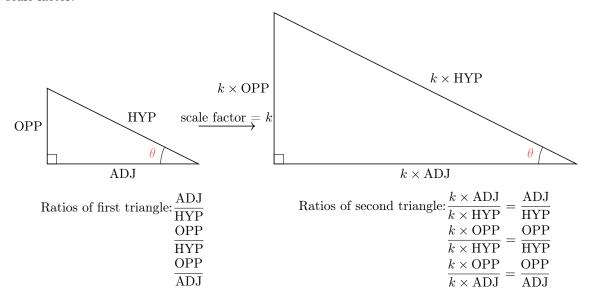
θ	15°	30°	45°	60°	75°
ADJ	4.0	4.0	2.5	$\frac{2.0}{2.0} = 0.50$	2.0
HYP	$\frac{1}{4.1} \approx 0.98$	$\frac{1}{4.6} \approx 0.87$	$\frac{1}{3.5} \approx 0.71$	$\frac{1}{4.0} = 0.50$	$\frac{1}{7.7} \approx 0.26$

Proposition Trigonometric Ratios

For any two right-angled triangles with the same angle θ , the ratios $\frac{\text{OPP}}{\text{HYP}}$, $\frac{\text{ADJ}}{\text{HYP}}$, and $\frac{\text{OPP}}{\text{ADJ}}$ are constant.

Proof

Consider two right-angled triangles with the same angle θ . Since their angles are equal, the triangles are similar. Let k be the scale factor:



The ratios remain constant due to the similarity of the triangles.

Due to the constant nature of the ratio $\frac{ADJ}{HYP}$ for any right-angled triangle with angle θ , we define the **cosine** function, denoted cos, where the input is θ and the output is $\frac{ADJ}{HYP}$. For example:

θ	15°	30°	45°	60°	75°
$\cos(\theta) = \frac{\text{ADJ}}{\text{HYP}}$	0.97	0.87	0.71	0.50	0.26

(±

For instance, $\cos(45^{\circ}) \approx 0.71$.

Definition Trigonometric Functions

In a right-angled triangle with angle θ :

$$\sin(\theta) = \frac{\text{OPP}}{\text{HYP}}, \quad \cos(\theta) = \frac{\text{ADJ}}{\text{HYP}}, \quad \tan(\theta) = \frac{\text{OPP}}{\text{ADJ}}$$

The mnemonic **SOH-CAH-TOA** helps recall the definitions of sine, cosine, and tangent:

- $\bullet \ \mathbf{S}\mathrm{ine} = \mathbf{O}\mathrm{pposite} \div \mathbf{H}\mathrm{ypotenuse}$
- Cosine = $Adjacent \div Hypotenuse$
- Tangent = Opposite \div Adjacent

To aid memorization, you can listen this song: https://www.youtube.com/watch?v=PIWJo5uK3Fo.

Ex: In the triangle below, find $\cos \theta$, $\sin \theta$, and $\tan \theta$.

Answer: Relative to θ :

- Hypotenuse: BC = 5
- Adjacent side: AB = 4
- Opposite side: AC = 3

$$\cos \theta = \frac{\mathrm{ADJ}}{\mathrm{HYP}} = \frac{4}{5}$$

$$\sin \theta = \frac{\mathrm{OPP}}{\mathrm{HYP}} = \frac{3}{5}$$

$$\tan \theta = \frac{\mathrm{OPP}}{\mathrm{ADJ}} = \frac{3}{4}$$

Proposition Tangent Formula

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

Proof

$$\frac{\sin \theta}{\cos \theta} = \frac{\frac{OPP}{HYP}}{\frac{HYP}{ADJ}}$$

$$= \frac{OPP}{HYP} \times \frac{HYP}{ADJ}$$

$$= \frac{OPP}{ADJ}$$

$$= \tan \theta$$

Method Using Calculator -

Trigonometric ratios for any angle can be calculated using a calculator in degree mode. Ensure your calculator is set to "degrees" before performing calculations.

Ex: In the triangle below, find x.

Answer:

$$\cos \theta = \frac{\text{ADJ}}{\text{HYP}}$$
$$\cos(30^\circ) = \frac{x}{3}$$
$$x = 3 \times \cos(30^\circ)$$
$$x \approx 3 \times 0.866$$
$$x \approx 2.6 \text{ cm}$$

C INVERSE TRIGONOMETRIC FUNCTIONS

Trigonometric ratios can be used to find unknown angles in right-angled triangles when at least two side lengths are known.

Definition Inverse Trigonometric Functions -

In a right-angled triangle with angle θ :

$$\theta = \cos^{-1}\left(\frac{\mathrm{ADJ}}{\mathrm{HYP}}\right), \quad \theta = \sin^{-1}\left(\frac{\mathrm{OPP}}{\mathrm{HYP}}\right), \quad \theta = \tan^{-1}\left(\frac{\mathrm{OPP}}{\mathrm{ADJ}}\right)$$

Ex: In the triangle below, find θ .

Answer:

$$\theta = \cos^{-1}\left(\frac{\text{ADJ}}{\text{HYP}}\right)$$
$$= \cos^{-1}\left(\frac{0.5}{1}\right)$$
$$= \cos^{-1}(0.5)$$
$$= 60^{\circ}$$