TRIGONOMETRY

Trigonometry is a branch of mathematics that explores the relationships between the side lengths and angles of triangles, particularly right-angled triangles. It has wide applications in fields such as science, engineering, astronomy, and video game development. The foundation of trigonometry rests on three primary ratios: sine, cosine, and tangent.

A RIGHT-ANGLED TRIANGLE

Definition Right-Angled Triangle ____

A right-angled triangle is a triangle with one angle equal to 90°. For a given angle θ (other than the right angle), we define:

- Hypotenuse (HYP): The longest side, opposite the right angle.
- Adjacent Side (ADJ): The side adjacent to the angle θ , forming one side of the angle.
- **Opposite Side (OPP)**: The side opposite the angle θ .

Ex: In the triangle below, identify the hypotenuse, the adjacent side, and the opposite side relative to the angle θ .

Answer:

- Hypotenuse: \overline{BC}
- Adjacent side: \overline{AC}
- Opposite side: \overline{AB}

B TRIGONOMETRIC FUNCTIONS

Proposition **Trigonometric Ratios**

	OPP	ADJ	OPP
For any two right-angled triangles with the same angle θ , the ratios	he ratios $\overline{\text{HYP}}$, $\overline{\text{HYP}}$, and $\overline{\text{ADJ}}$ are contained as $\overline{\text{ADJ}}$	$\overline{\mathrm{ADJ}}$ are constant.	

Due to the constant nature of the ratio $\frac{\text{ADJ}}{\text{HYP}}$ for any right-angled triangle with angle θ , we define the **cosine** function, denoted cos, where the input is θ and the output is $\frac{\text{ADJ}}{\text{HYP}}$. For example:

θ	15°	30°	45°	60°	75°
$\cos(\theta) = \frac{\text{ADJ}}{\text{HYP}}$	0.97	0.87	0.71	0.50	0.26

For instance, $\cos(45^\circ) \approx 0.71$.

Definition **Trigonometric Functions** -

In a right-angled triangle with angle θ :

$$\sin(\theta) = \frac{\text{OPP}}{\text{HYP}}, \quad \cos(\theta) = \frac{\text{ADJ}}{\text{HYP}}, \quad \tan(\theta) = \frac{\text{OPP}}{\text{ADJ}}$$

The mnemonic SOH-CAH-TOA helps recall the definitions of sine, cosine, and tangent:

- $Sine = Opposite \div Hypotenuse$
- Cosine = Adjacent \div Hypotenuse
- \mathbf{T} angent = \mathbf{O} pposite ÷ \mathbf{A} djacent

To aid memorization, you can listen this song: https://www.youtube.com/watch?v=PIWJo5uK3Fo.

Ex: In the triangle below, find $\cos \theta$, $\sin \theta$, and $\tan \theta$.

Answer: Relative to θ :

- Hypotenuse: BC = 5
- Adjacent side: AB = 4
- Opposite side: AC = 3

$$\cos \theta = \frac{\text{ADJ}}{\text{HYP}} = \frac{4}{5}$$
$$\sin \theta = \frac{\text{OPP}}{\text{HYP}} = \frac{3}{5}$$
$$\tan \theta = \frac{\text{OPP}}{\text{ADJ}} = \frac{3}{4}$$

Proposition Tangent Formula

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

Method Using Calculator _

Trigonometric ratios for any angle can be calculated using a calculator in degree mode. Ensure your calculator is set to "degrees" before performing calculations.

Ex: In the triangle below, find x.

Answer:

$$\cos \theta = \frac{\text{ADJ}}{\text{HYP}}$$
$$\cos(30^\circ) = \frac{x}{3}$$
$$x = 3 \times \cos(30^\circ)$$
$$x \approx 3 \times 0.866$$
$$x \approx 2.6 \text{ cm}$$

C INVERSE TRIGONOMETRIC FUNCTIONS

Trigonometric ratios can be used to find unknown angles in right-angled triangles when at least two side lengths are known.

Definition Inverse Trigonometric Functions

In a right-angled triangle with angle $\theta {:}$

$$\theta = \cos^{-1}\left(\frac{\text{ADJ}}{\text{HYP}}\right), \quad \theta = \sin^{-1}\left(\frac{\text{OPP}}{\text{HYP}}\right), \quad \theta = \tan^{-1}\left(\frac{\text{OPP}}{\text{ADJ}}\right)$$

Ex: In the triangle below, find θ .

Answer:

